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Characterizing the Effects of
Multiple Analogs and Extraneous
Information for Novice Designers
in Design-by-Analogy
This study examines how the quantity of ideas and analog transfer in design-by-analogy
(DbA) are affected by multiple analogs and extraneous information, or noise, using a
between-subjects, factorial experiment. To evaluate the effects of multiple analogs and
noise on ideation, the study uses two metrics in conjunction with one another; namely,
number of ideas (most typical in engineering design) and recognition of high-level princi-
ple (more common in psychology). The quantity analysis included three components:
number of ideas generated, number of ideas that use example products (analogs and
noise stimuli), and number of ideas that use analogs. The results indicate two important
findings: (1) providing multiple analogs during ideation had a positive impact on ideation
quantity and analog transfer. Specifically, the number of analog-based ideas increased
with increasing number of analogs but eventually reached a “saturation point”; (2)
introducing extraneous information (noise) diminished the successful mapping of analogs
to design solutions. The presence of extraneous information did not significantly affect
student designers’ ability to identify high-level principles in analogs. The study demon-
strated that some extraneous information was perceived as surface similar analogs. Any
design analog retrieval method or automated tool will produce extraneous information,
and more work is needed to understand and minimize its impact.
[DOI: 10.1115/1.4038565]

1 Introduction

Continued innovation is essential for economic prosperity. In a
knowledge-based economy, profits are increasingly influenced by
innovation capabilities [1]. One approach to efficiently increase
innovation is the use of design analogies [2–7]. Studies have
shown that designers frequently use analogs not only to generate
ideas, but also to explain design ideas and at times to predict
potential problems [6,7]. Idea generation through design-by-
analogy (DbA) can enhance the prospect of producing creative
and novel ideas [8]. A well-known example of DbA is Velcro

VR

,
which was invented by George de Maestral when he noticed the
hooks present in burrs and their tendency to grab onto his pet’s
fur. Maestral transferred the minuscule hook feature to a textile
application and created Velcro

VR

.
A key for successful analog transfer is the identification of the

relevant principles to be transferred between analogs. Studies
show that increasing the number of analogous items improves
analog transfer [7,9–15]. This is likely due to a decrease in the
number of similarities in common among a set of analogs, making
it easier to identify the relevant content, or high-level principles.
Increasing the number of analogs is generally agreed to be benefi-
cial to idea generation; however, the effect of irrelevant informa-
tion or noise has not been studied.

This study examines how the quantity of ideas and analog trans-
fer in DbA are affected by multiple analogs and extraneous infor-
mation (or noise). Computer-based systems are being developed
to support the identification of useful analogs, but these systems
will always contain a degree of extraneous information, and it is
unclear how many useful analogs should be presented. It is often

possible to group analogs based on the same higher level struc-
tural information. Prior research indicates that the introduction of
two analogs improves identification of the high-level principle,
but the effect of a greater number of analogs has not been
explored extensively, nor has the introduction of extraneous infor-
mation. To this end, a between-subjects factorial experiment
presents engineering students with a design problem and a varying
number of analogs and noise stimuli.

1.1 Cognitive Science Models for Analogical Reasoning.
Various analogical reasoning models have been proposed, with
the majority agreeing on a four-step process (Fig. 1) [16]:

Fig. 1 Schematic of the analogical reasoning process.
Adapted from Ref. [16].
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� Encoding of the base and target analogs: Identifying abstract
principles that characterize the base and target analogs to
determine potential similarity.

� Retrieval of appropriate base analog for target: Selecting
the base analog that is relevant for the given target.

� Mapping of base to target: Transferring information from
the base analog to the target analog.

� Guideline induction: Developing abstract rules or solution
principles (schema) for application to future problems, with-
out the need for a base analog.

Despite a common process, the various models tend to disagree
on the importance of deep structure or schematic information, ver-
sus the surface feature or semantic content, during the analogical
reasoning process. For example, structure-mapping [13] and
pragmatic-schema [17] theories consider schematic information to
be the major factor in the mapping stage, with surface features
being used primarily for analog selection. On the other hand, in
exemplar-analogy theory [18], semantic information (i.e., surface
features) plays a larger role in all stages of analogical reasoning.
Exemplar-analogy theory posits that analogs are stored as com-
plete units. In this model, the mapping stage is driven by all
aspects of the base analog, and surface features play a role equally
as important as deep similarities.

The current study was designed using the generalized analogi-
cal reasoning model shown in Fig. 1 [16]. It assumes that content
abstraction is critical for the analogical transfer, as Goel [19] and
Nersessian [20] have suggested. The study manipulates the encod-
ing and retrieval stages by introducing a predefined set of base
analogs, and observes the resulting effects during the mapping
and schema induction stages.

1.2 Structural-Mapping. Structure-mapping [13,21] theory
considers the structural information to be the major factor in the
mapping stage, with surface features being used primarily for ana-
log selection. Surface features are defined as entities (stand-alone
individuals or objects) or attributes (generally adjectives or
descriptions). Structural elements consist of (a) first-order predi-
cates, which form a relationship between two entities and (b)
higher-order relations, which form connections between entities,
attributes, or even first-order predicates. For example, in the
higher-order relation “The bicycle moves because crank-a turns
wheel-b”; “crank-a turns wheel-b” is a first-order predicate;
bicycle, crank-a, and wheel-b are entities or surface features. The
transfer of the information in structural elements is what leads to
successful analog transfer. Abstraction, discussed in further depth
in Sec. 1.3, of structural elements is vital to initiate mapping from
base to target analog [16].

1.3 Abstraction. Cognitive science theories argue that
abstraction is a key to successful analog transfer [16], and studies
in design [22] and artificial intelligence [19] have come to the
same conclusion. For example, a biomimicry study found that bio-
mimetic designs are fully realized only when the designers can
abstract a strategy from an appropriate biological analog [8].
Abstraction allows designers to ignore the incidental and focus on
the essential, allowing the designers to better define the overall
functional requirements and constraints [23].

1.4 Embedded Principle Versus Abstract Principle
Method. Problem solving methods can be explained by using
examples (embedded principle) or guidelines (abstract principle).
For instance, if students are asked to solve a problem after they
are given several example problems with principles integrated
into the solving of the problems, they learn through embedded
principle [24]. If, instead, the students are given a set of explicit
general principles and an explanation of how the principle is
applied with an example problem, they learn through abstract
principle [24]. Studies attempting to determine which is more

successful have had inconclusive results [25], and it can be con-
cluded that the appropriate method may be largely case depend-
ent. In the context of learning mathematics, Richland and
McDonough [26] found that providing cues, showing alignment
between the source and target, to accompany an instructional ana-
log improved students’ abilities to later identify relevant analogs
and successfully extend knowledge to new contexts.

1.5 Identifying High-Level Principles. A key step in
successful DbA is identifying the relevant high-level principle(s)
for a given problem. Research shows that people have inherent
difficulty with this task. For one, surface features tend to have a
greater influence on base analog selection than do deep similar-
ities [16,27–30], particularly for novices [31]. The primary prob-
lem with base analog selection through surface features is that it is
often the mapping of deep similarities, or high-level principles,
that leads to the functionally effective solutions [32,33].

Despite surface features having greater influence in analog
retrieval, studies show that people can more easily make connec-
tions when they are presented with two analogs [9,10]. Markman
and Gentner have found that by using two analogs instead of one,
participants were able to focus more on the high-level relational
attributes than on surface features [12]. Lowenstein et al. found a
similar effect in the context of extracting abstract schema from
negotiation strategy examples [34]. Also, Namy and Gentner’s
study of children in comparative learning concluded that children
were more likely to form categorization rules that were more
abstract when they were given two examples from a given cate-
gory than when they were given one [15].

In practice, designers, novices and experts alike, have a massive
selection of potential analogs from which we choose an appropri-
ate base analog. Computational systems are also beginning to pro-
vide analogs. Yet, there is still little knowledge about how idea
generation is affected by multiple analogs and extraneous infor-
mation. Based on the prior studies we reviewed, the researchers
propose two hypotheses: that ideation quantity and analog transfer
(1) improve with an increasing number of analogs and/or (2)
diminish under noise.

2 Methodology

The hypotheses were evaluated with a between-subjects 4X2
factorial experiment (Table 1), where the first factor was the num-
ber of analogs (1, 2, 3, and 5), and the second factor was the noise
level (none or three noise stimuli per analog). The number of ana-
logs was selected based on the literature reviewed in Sec. 1
[11,12,15], with the goal of exploring whether analog transfer
improves when more than two analogs are used and providing an
estimate of how many may be highly effective. To this end, a maxi-
mum of five analogs were tested, and the 3-analogs condition was
selected to be between the 2- and 5-analogs conditions. The 3-
analogs condition served as an approximate midpoint data to char-
acterize the continuous ideation result as a function of multiple ana-
logs. A 4-analogs condition was not tested, as it would increase the
number of participants beyond that which was feasible to recruit.
The noise level was chosen as three times the number of analogs so
that there would be 75% noise and 25% analogs in the noise condi-
tions. In DbA practice, a set of examples may contain extraneous
information, and often the level of extraneous information outnum-
bers the useful information. Thus, a consistent 3:1 noise to analog
ratio was used to evaluate the effect of noise stimuli in different
analog conditions. In addition to the factorial experiment, a condi-
tion with 100% noise, or the all-noise condition, was tested. Gener-
ally, a control condition (containing no stimulus) is tested as a
comparison with other conditions to analyze the net effect of any
stimulus; in this study, where the effects of two types of stimuli,
namely, analogs and noise, are evaluated, the control condition is
limited in evaluating the individual effect of each type of stimulus.
Thus, the all-noise condition was tested to serve as a basis for ana-
lyzing the ideation results under noise.
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2.1 Participants. Seventy-two senior undergraduate mechan-
ical engineering students at a major public U.S. university partici-
pated in the experiment. The students were compensated for
participating in the study, and they were allowed to choose either
extra credit in their design class or $20 compensation. If they did
not wish to participate but still wished to receive extra credit in
their course, they were given the opportunity to complete an unre-
lated assignment for extra credit instead. The majority of partici-
pants chose the extra credit compensation option. Fifty-seven
males and fifteen females enrolled in the study; they were an aver-
age of 22.3 years of age and had an average of 4.8 months of full-
time engineering work experience.

The participants were randomly distributed across nine condi-
tions, as shown in Table 1. The experiment was run in various ses-
sions with one to four participants at a time. Only one condition
was tested per session, and care was taken to limit interaction
among participants. Participants were placed at tables separated
by cubical walls. At the end of each session, they were asked not
to discuss any aspect of the experiment with their peers to prevent
bias.

The experiment proctor made an error in the experiment sched-
ule, and as a result, the 2-analogs no-noise and 1-analog with

noise conditions were run with more participants than intended,
resulting in a total of fourteen and nine participants, respectively.
One participant in the 2-analogs no-noise condition informed the
experiment proctor that he did not put much effort in the ideation;
that participant’s ideation result was not used for the data analysis.
In total, 71 data sets were used for the analysis.

2.2 Design Problem. The design problem (Fig. 2) asked par-
ticipants to devise methods to automatically lock a broken door in
a Mars habitat. The goal of the design task was to have a pin
return to the locked position as shown in a locking mechanism
drawing (Fig. 3) without the use of electricity or a metal coil
spring. This problem was chosen because it is comprehensible,
does not require significant prior experience with the task, and
consists of large set of potential solutions. In addition, the prob-
lem was chosen for convenience, as there are many commonly
available products that have elasticity as functional feature.

2.3 Example Products. Example products were chosen in
several different domains (office products, toys, machine compo-
nents, etc.), so the domain would not be a factor. For the locking
mechanism, the chosen functional feature was energy storage and
release through elastic deformation. A high-level principle had to
be chosen where a large variety of applicable products could be
identified that did not share surface features. The researchers
acknowledge that there are other principles that could be used to
solve this design problem, and there is never only one correct
answer to any open-ended design problem.

In the experiment, physical items were given to participants.
Each item was explained verbally with a scripted description by
an experiment proctor with a video projected on a wall. This was
to ensure that the student designers had an adequate understanding
of each product. The analogs and noise stimuli are listed in Table 2
and discussed in Secs. 2.3.1 and 2.3.2. The logic used for selecting
the specific analog for the 1-analog condition was that it had the
fewest surface features. For the 2-analogs condition, the two were
chosen that were most different from one another. Beyond these
two conditions, the choices of which particular analogs were
included in each condition were random.

2.3.1 Analogs. Generally, an analog is a mapping of knowl-
edge from one domain to another, enabled by a supporting system

Table 1 Summary of 4X2 factorial experiment number of participants in each condition

Factor 1: number of analogs

1 Analog 2 Analogs 3 Analogs 5 Analogs All-noise

Factor 2: noise level No-noise 7 14 7 7 7
Noise 9 7 7 7

Fig. 2 Design problem statement

Fig. 3 Drawing of locking mechanism
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Table 2 List of example products in each condition

Condition 1-Analog 2-Analogs 3-Analogs 5-Analogs
1-Analog &

3 noise stimuli
2-Analogs &

6 noise stimuli
3-Analogs &

9 noise stimuli
5-Analogs &

15 noise stimuli 15 noise stimuli

Analog Sticky note
holder lid

Constant force
spring

Constant force
spring

Flour duster Sticky note
holder lid

Compression
spring

Flour duster Flour duster None

Bungee blast Bungee blast Constant force
spring

Bungee blast Bungee Blast Constant force
spring

Compression
spring

Sticky note
holder lid

Compression
spring

Sticky note
holder lid

Bungee blast Bungee Blast
Compression

spring
Compression

spring

Noise None Sticky note
flip book

Sticky note
flip book

Flour sifter Flour sifter Flour sifter

Business
card holder

Tomato slicer Paper airplane Paper airplane Paper airplane

Desk organizer Desk organizer Spiral chip holder Spiral chip holder Spiral chip holder
Flour sifter Tea strainer Sticky note flipbook Sticky note flipbook

Pool noodlea Tomato slicer Business card holder Business card holder
Whiska Immersion heater Tea strainer Tea strainer

Sticky note flip book Tomato slicer Tomato slicer
Egg yolk separatora Desk organizer Desk organizer

Pool noodlea Immersion heater Immersion heater
Burner coil Burner coil

Model rocket Model rocket
Egg yolk separatora Egg yolk separatora

Pen standa Pen standa

Pool noodlea Pool noodlea

Whiska Whiska

aNoise stimulus with surface feature.
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of relations or representations between situations [13]. For the
purpose of this study and this particular design problem, the
authors had to narrow the definition to be relations connecting the
source and the target through energy storage and release through
elastic deformation. The experiment used five analogs shown in
Fig. 4. All products have a functional feature to store and release
energy through elastic deformation. For instance, the bungee blast
flies away when a user pulls on the rubber band and releases the
grip. Participants were given the physical items to study their fea-
tures. For the sticky note holder lid, an entire sticky note holder
was provided to demonstrate the functional feature to the partici-
pants. Although the problem statement explicitly said the metal
coil spring cannot be used for the solution, the compression spring
and constant force spring were used. The researchers intentionally
included these misleading examples to induce potential fixation,
and determine if it was a factor in the equation of the effect of
noise on DbA. There is precedent for doing this in prior work by
the authors in which participants were given an example solution
that directly violated the design requirements [35].

2.3.2 Noise. Products without elasticity as the functional fea-
ture were considered noise stimuli. For this study, the noise

products were further classified into pure noise (Fig. 5) and noise
with elasticity as surface feature (Fig. 6). In principle, all products
have some level of elasticity or present an elastic deformation.
However, it is unlikely to characterize something “elastic” unless
it deforms relatively easily by hand and returns to its original
shape. Thus, if a product has an ability to return to its original
shape after some deformation, it is considered a noise with elastic-
ity as surface feature. On the other hand, if a product is very stiff
and would bend permanently (plastically) or fail if a large stress is
applied, it is considered a pure noise.

2.4 Experimental Procedure

2.4.1 Conditions. Participants were seated in randomly
assigned cubicles on each side to prevent any contact between the
participants. Each participant was given a hard copy of the prob-
lem statement and physical items of example products as listed in
Table 2. In addition, participants were given several sheets of
blank paper on which to list and sketch ideas, as well as multiple
copies of drawings of the locking mechanism. The drawings of the
locking mechanism allowed them to modify the current mechanism
and spend less time sketching the repetitive parts for each idea. For

Fig. 5 Pure noise used as stimuli in study

Fig. 6 Noise with elasticity as surface feature used as stimuli in study

Fig. 4 Analogs used as stimuli in study
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ideation, the participants were provided and instructed to use dif-
ferent colors of pens. This allowed the researchers to track the rate
of ideation and assure all work was done during the assigned period
of task. To avoid an early start, the problem statement and draw-
ings were stacked underneath the sheets of blank paper.

The proctor introduced the example products by stating that
they “may or may not be helpful to generate solutions” and
described each example product verbally with video projected on
a wall. The products were shown in a random order, and there was
no indication whether each product was analog or noise stimuli.
Once finished, the proctor asked the participants to find the design
problem below the blank papers and read along as he read aloud.
Before the participants were instructed to begin the idea genera-
tion, they were told that their designs were not limited by the
example products or the drawing of locking mechanism. At the
end of each set of instructions, they were asked whether they
understood the directions.

2.4.2 Idea Generation. Participants were then allowed to gen-
erate ideas for 40 min. This period allowed them to exhaust their
ideas, making the resulting solution set a better representation of
each participant’s solution space. The rate of ideation was traced
by exchanging the color of the participant’s pen at the 5, 10, 20,
and 30 min points.

2.4.3 Idea Feature Listing. After the ideation phase, the proc-
tor gave participants an example of analogy with Velcro, explain-
ing that its design was based on the spines on a burr. The
participants were then asked to number each solution and mark
“X” if the solution was not based on an analogy to any given
example product. In the next task, the proctor gave examples of
two different solutions being based on the same original analog:
(1) a water dumbbell and (2) a punching bag, both using inflate/
deflate and storage features of an analogy to an air mattress. The
participants were then asked to list what example products were
used for ideation and what features were mapped for the ideas.

2.4.4 Product Separation and Feature Listing. The experi-
ment proctor asked participants to identify the example products
used for idea generation by separating them from the given set of
the products. This occurred at approximately the halfway point of
the experiment and the participants were allowed to take a 5 min
break to avoid fatigue. After the break, they were asked to list, for
each of the example products, the features used and features not
used, to determine which features were and were not mapped.

2.4.5 Similarity Rating. Participants were asked to rate the
similarity between their ideas and example products used. This
was intended to capture a more individual, self-reported perspec-
tive regarding how the participants viewed each example product
and whether they viewed the analogs and noise products differ-
ently. The range of the similarity rating was from 1 (low similar-
ity) to 9 (high similarity).

Instructions for the idea-product similarity activity asked the
participants to list a similarity rating for only the ideas they gener-
ated and “leave unused boxes blank.” Unfortunately, thirteen par-
ticipants across nine conditions did not follow these instructions
in the expected way, and left multiple boxes blank that should
have been filled. Participants who did not follow instructions com-
pletely tended to skip products that had little similarity with their
generated concepts. For the analysis, ratings left blank by the par-
ticipants were not included; they were not entered as 1’s.

2.4.6 Listing of High-Level Principle. Participants listed high-
level principles in two different stages. In stage I, they were asked
to determine if a set of the example products shared a common
principle that could be used to solve the design problem. They
were asked to list the principle and mark a star next to the ideas
that used the principle. Next, in stage II, participants were
informed which of the example products were analogs. Again,
they were asked to list the principle and put a circle next to the
ideas that used the principle. After stage II, the participants were

asked to generate ideas using the listed principles for an additional
10 min.

2.4.7 Postexperiment Survey. The final activity was a survey
to reinforce the results from the previous metrics and to gather
demographic information. A five-level scale questionnaire asked
participants about the usefulness and practicality of the example
products and about the perceived difficulty of the similarity-rating
task (Likert-scale). The experiment concluded by reminding the
students not to discuss the experiment with their peers.

3 Metrics for Evaluation

After the data collection, the quantity of ideas and high-level
principle recognition rate were used to evaluate ideation quality.
Prior studies in design and psychology related to analogy, includ-
ing external stimuli, have implemented the quantity of ideas and
high-level principle recognition as measures of effectiveness
[2,5,15,36–39]. In this analysis, they were used in conjunction
with one another to fully understand the effects of analogs and
extraneous information on ideation.

3.1 Quantity of Ideas. The number of ideas generated was
evaluated to determine how participants performed during idea-
tion. Quantity of ideas is often used as an objective measure to
assess the effectiveness of ideation, as more ideas can result in a
higher chance of producing high quality, novel ideas [40–42]. To
investigate how different numbers of example products (analogs)
affect analog transfer, three metrics were used to assess the idea-
tion quantity outcomes; these were (1) number of ideas generated,
(2) number of ideas that use example products (analogs and noise
stimuli), and (3) number of ideas that use analogs. These metrics,
ordered such that each metric is a subset of its precedent, were
used to assess the participants’ reliance on example products dur-
ing ideation.

3.2 High-Level Principle Recognition Rate. The percentage
rate of participants accurately listing “store and release energy
through elastic deformation” as the high-level principle was com-
puted to evaluate the analog transfer under different levels of stim-
uli. Similar to the number of analog-based ideas, this metric was
used to objectively measure whether the participants successfully
mapped the high-level principle during ideation. The listed princi-
ple was assessed by one of the authors and an independent third
party using the following criteria: Does the principle listed show
some level of abstraction that can lead to multiple solutions? For
example, if a participant listed “flexible beam,” this was not
deemed a correct principle since it focuses on a specific solution.
On the other hand, listing “the ability to flex and return to the orig-
inal shape” was considered acceptable. Although the participant
did not explicitly list elasticity, this description of the high-level
principle can lead the designer to multiple solutions. Additionally,
if the participant listed “spring-like,” this was accepted as a cor-
rect principle since it does not imply a specific solution, but rather
a type of behavior. The results from stage II were used to deter-
mine whether pointing out which products are analogs increases
the high-level principles recognition rate. The two evaluators rated
all the data and obtained similar results. Their Pearson’s correla-
tion factors were 0.81 and 0.87 for stages I and II, respectively.
The results from only one evaluator were used for the analysis.

The objective of the study was to analyze analog transfer and
the effects of stimuli types on the overall quantity of ideas gener-
ated. Success in analog transfer is the key metric implemented for
psychological studies and they generally can measure if a solution
was reached or not. In the context of design, there are typically
many cognitive paths to reach solutions and multiple solutions
can be generated for each solution path. Thus, the researchers
choose to have the participants list the high-level principle for
each solution, basically the inference between the analog and tar-
get problem. In addition to the high-level principle, the number of
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analog-based ideas was evaluated, as it represents whether the
participants generated functionally an effective solution by map-
ping the high-level principle, as mentioned in Sec. 1.5, during
ideation.

4 Results

This study examines how the quantity of ideas and analog trans-
fer in DbA are affected by multiple analogs and extraneous infor-
mation, or noise. In Secs. 2.3.1 and 2.3.2, experimental results are
presented to address how ideation is affected by varying numbers
of analogs and the presence of noise. Figure 7 shows sample idea-
tion sketches from the ideation process. The ideation outcomes
are first evaluated by computing the number of ideas generated,
followed by an analysis of the high-level principle recognition
rate. Finally, postexperiment survey results are presented to pro-
vide additional insight into the results. For statistical analysis of
the results, IBM SPSS Statistics 24.0 was used.

4.1 Number of Ideas. The number of ideas generated in the
different conditions was plotted as a function of number of ana-
logs provided in each condition, for each of the two noise levels
(no-noise and noise) (e.g., Fig. 8). The plot provides a graphic
overview of how the number of analogs given in each condition
and presence of noise affect ideation quantity, and how they inter-
act with each other. Since each provides different insights into the
effects of analogs and noise on the process, the experimental
results presented in this section are (1) number of ideas generated,
(2) number of ideas generated using example products, and (3)
number of ideas generated using analogs.

4.1.1 Number of Ideas Generated. Figure 8 shows the number
of ideas generated. In general, the trend lines of no-noise and
noise conditions are consistent across varying number of analogs.
According to Levene’s test, the result violated homogeneity
(p¼ 0.036). However, ANOVA is robust to violations of the
homogeneity assumption and normal distribution is assumed. A 2-
way ANOVA validated that the number of ideas generated is not
affected by the varying number of analogs, F(3,56)¼ 1.0,
p¼ 0.38 and the presence of noise, F(1,56)¼ 0.44, p¼ 0.51. The
interaction between the two factors was F(3,56)¼ 1.4, p¼ 0.24. It
is also interesting to note that the individuals who received all
noise products produced fewer ideas than individuals in other con-
ditions (t-value¼ 2.24, df¼ 69, p¼ 0.028).

4.1.2 Number of Ideas That Use Example Products (Analogs
and Noise Stimuli). Figure 9 shows the number of ideas that par-
ticipants generated using example products. The result generally
increases with an increasing number of analogs. However, there is
a minor difference between the trend lines of no-noise and noise
conditions. The no-noise and noise conditions are unusually dif-
ferent in the 2-analogs condition. This could be due to a random
error indicated by a large error bar in 2-analogs with noise condi-
tion. The 2-analogs with noise condition is not statistically differ-
ent from the 3-analogs condition. Also, it is interesting to note
that individuals who received 15 noise stimuli (all-noise condi-
tion) generated a similar number of example product based ideas
as individuals who received one analog. According to Levene’s
test, the data for this graph violated homogeneity (p¼ 0.037).
However, for the same reason stated in Sec. 4.1.1, the normal dis-
tribution is assumed for ANOVA. The test validated that the vary-
ing number of analogs has statistical significance, F(3,56)¼ 7.1,

Fig. 7 Sample ideation sketches

Fig. 8 Number of ideas generated, error bars show 6 one
standard error

Fig. 9 Number of ideas that use example products, error bars
show 6 one standard error

Journal of Mechanical Design MARCH 2018, Vol. 140 / 031101-7

Downloaded From: http://mechanicaldesign.asmedigitalcollection.asme.org/ on 02/16/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



p< 0.001, while the presence of noise does not, F(1,56)¼ 0.001,
p¼ 0.97. The interaction between the two factors was
F(3,56)¼ 1.1, p¼ 0.37. Post-hoc Tukey HSD test result in Table
3, a symmetric table, shows that the one analog condition is sig-
nificantly different from the rest.

4.1.3 Number of Ideas That Use Analogs. Figure 10 shows
the number of ideas that participants generated using analogs. The
slopes of the trend lines and a gap between them suggest that the
result is affected by the varying number of analogs and presence
of noise. According to Levene’s test, the result satisfies homoge-
neity (p¼ 0.22). The test confirmed that the results are signifi-
cantly affected by the varying number of analogs, F(3,56)¼ 5.7,
p¼ 0.002 and the presence of noise, F(1,56)¼ 11, p¼ 0.001. The
presence of noise causes participants to be less likely to leverage
the effective examples to find solutions. The interaction between
the two factors was F(3,56)¼ 0.34, p¼ 0.80. Table 4 shows the
post-hoc Tukey HSD test result for the multiple analog
conditions.

4.1.4 Alternative ANOVA Result. One participant in 1-analog
with noise condition generated twice the number of ideas than the
rest of the participants (more than two and a half standard devia-
tions from the mean), suggesting that the data are an outlier. To
investigate its effect on the result, ANOVA was performed again
after removing the outlier from the dataset.

While the original and refined datasets have similar ANOVA
results for the number of ideas that use example products (Table 5)
and analogs (Table 6), there is a significant change for noise that

becomes a statistically significant factor in the number of ideas
generated (Table 7), F(1,55)¼ 4.8, p¼ 0.075. The presence of
noise significantly reduces the number of ideas generated. The
refined dataset satisfies the homogeneity (p¼ 0.22) and normality
(p¼ 0.57), according to Levene’s test and Shapiro-Wilk’s test,
respectively. Interestingly, the effect of noise is significant on the
number of ideas when the outlier is removed. In removing one
outlier, statistical significance is achieved in this case, when it
was not in the original data set.

4.1.5 Validation of 2-Way ANOVA Results Using Resampled
Dataset. 2-way ANOVA is robust under several assumptions, one
being the homogeneity of variance. However, an inconsistency of
sample size among different conditions, as seen in Table 1, may
violate the assumption and question the quality of ANOVA
results. For a two-way treatment structure where every treatment
combination is observed at least once, Milliken and Johnson rec-
ommend using a general linear model with type II sum of squares,
which is the analysis performed by the authors [43]. In order to
explore the effect of large sample size difference in 2-analogs no-
noise condition, ANOVA was conducted on the dataset after
downsampling the condition’s participant number from 14 to 9.
Since one participant’s data were already ignored for the lack of
effort, only four participants’ data were eliminated. Table 8 shows
the original ANOVA results in comparison to that of the sampled
dataset. For each metric, four participants who generated the
greatest number and four participants who generated the fewest
number were removed from the sample. As shown in the table,
the removal of the four best or four worst data does not greatly
change the significance value, suggesting that the ANOVA results

Table 3 Post-hoc test result (p-value) for the number of ideas
that use example products

1-Analog 2-Analogs 3-Analogs 5-Analogs

1-Analog 0.001a 0.005a 0.012a

2-Analogs 0.99 0.90
3-Analogs 0.99
5-Analogs

aSignificant difference.

Fig. 10 Number of ideas that analogs, error bars show 6 one
standard error

Table 4 Post-hoc test result (p-value) for number of ideas that
use analogs

1-Analog 2-Analogs 3-Analogs 5-Analogs

1-Analog 0.001a 0.003a 0.046a

2-Analogs 1 0.71
3-Analogs 0.76
5-Analogs

aSignificant difference.

Table 6 ANOVA results of original and refined datasets, num-
ber of ideas that use analogs

Original dataset Refined dataset

df F Sig. df F Sig.

Number of analogs 3 5.7 0.002 3 5.2 0.003
Noise 1 11 <0.001 1 11 0.002
Interaction 3 0.34 0.80 3 0.36 0.79
Error 56 55

Table 7 ANOVA results of original and refined datasets, num-
ber of ideas generated

Original dataset Refined dataset

df F Sig. df F Sig.

Number of analogs 3 1.0 0.38 3 0.99 0.41
Noise 1 0.44 0.51 1 3.3 0.075
Interaction 3 1.4 0.24 3 0.64 0.60
Error 56 55

Note: Becomes statistically significant when the outlier is removed.

Table 5 ANOVA results of original and refined datasets, num-
ber of ideas that use example products

Original dataset Refined dataset

df F Sig. df F Sig.

Number of analogs 3 7.1 <0.001 3 6.5 0.001
Noise 1 0.001 0.97 1 0.005 0.94
Interaction 3 1.1 0.37 3 1.0 0.40
Error 56 55
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of the original dataset with one condition having 14 data are still
robust.

4.2 High-Level Principle Recognition Rate. Figure 11
shows the percentage of participants correctly identifying the
high-level principle in different conditions. For no-noise condi-
tion, the recognition rate is consistent across the varying number
of analogs, except for the 2-analogs condition where the recogni-
tion rate is 100%. For the noise condition, the recognition rate
increases with additional analogs, but decreases in the 5-analogs
condition. Binary logistic regression with the number of analogs
and noise treated as categorical variables was performed. The
effect of the number of analogs was statistically significant
(Wald¼ 10.97, df¼ 3, p¼ 0.012), but the effect of noise was not
(Wald¼ 0.43, df¼ 1, p¼ 0.50). The stage II result was compared
with the stage I result using Pearson’s chi square tests to assess
whether the participants could better recognize the high-level

principle when they are informed which example products are
analogs. However, none of the changes were statistically signifi-
cant (lowest p-value was 0.15).

4.3 Similarity Ratings. The similarity ratings were analyzed
to determine whether the noise products (pure noise and noise
with elasticity as a surface feature) were indeed seen as different
from the intended analogs. According to the similarity rating task,
the mean similarity ratings were 2.4 for analog, 2.3 for noise with
elasticity as a surface feature, and 1.6 for pure noise (Fig. 12). To
evaluate the significance of the result, an ANOVA was performed.
The result violated normality and homogeneity, but the small sam-
ple size is assumed to be normal, and the ANOVA was justified.
According to the test, the similarity ratings of all three product
types were significantly different, F(2,444)¼ 26, p< 0.001. The
similarity rating of noise with surface feature was more similar to
that of analogs than that of pure noise, but still statistically differ-
ent (t-test unequal variances, t¼ 8.7, p< 0.001).

To further validate that the analogs influenced the participants’
processes differently, the number of ideas generated using exam-
ple products was analyzed as a function of time (Fig. 13). The
similarity ratings are self-reported data, which can often be inac-
curate, and the frequency of usage is another measure of the
impact of the analogs. Prior research has also shown that partici-
pants may not use distant domain analogs initially in the process,
but only later when the problem remains unsolved [44]. Figure 13
shows that participants implemented analogs more frequently than
noise products at an early phase of ideation, and generated similar
numbers of ideas based on the two noise types throughout the
exercise. These findings suggest that the participants use pure
noise and noise with a surface feature in a similar fashion to each
other, but distinct from analog. The time-series analysis represents
the data directly from ideation results, and thus depicts the partici-
pant’s behavior more clearly than does the similarity-rating task.
Thus, researchers decided to group the two noise types together
for further data analysis, as originally intended.

Table 8 ANOVA results (p-value) of original and resampled datasets

Number of ideas
(p-value)

Number of ideas that
use example products (p-value)

Number of ideas that
use analogs (p-value)

Number of analogs Noise Interaction Number of analogs Noise Interaction Number of analogs Noise Interaction

Original dataset 0.38 0.51 0.24 <0.001 0.97 0.37 0.002 0.001 0.80
4 best data removed 0.24 0.78 0.31 0.001 0.72 0.18 0.004 0.005 0.476
4 worst data removed 0.43 0.34 0.16 <0.001 0.70 0.74 <0.001 <0.001 0.843

Fig. 11 Percentage of high-level principle recognition rate in
stage I

Fig. 12 The mean similarity ratings between ideas and exam-
ple product, error bars show 6 one standard error

Fig. 13 Number of ideas that use analogs, pure noise, and
noise w/surface feature over time, error bars show 6 one stand-
ard error
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4.4 Postexperiment Survey. The postexperiment survey
results characterize the participants’ views toward the example
products and reinforce the findings presented in Secs. 4.1 and 4.2.
Three Likert scale questions were evaluated and the results of no-
noise and noise conditions are plotted as a function of the varying
number of analogs. The Likert scales were given numerical values
from 0 (strongly disagree) to 4 (strongly agree) and the 2-way
ANOVA test was performed. To the best of the authors’ knowl-
edge, a nonparametric version of an ANOVA with two factors is
not widely accepted. Instead, the best option is to implement two
one-way K-W ANOVAs to provide statistical insight into the
data. A one-way K-W ANOVA with only two levels is equivalent
to a Mann-Whitney test, so the Mann-Whitney is reported. The 2-
way ANOVA and homogeneity test results are also tabulated in
Table 9, and they show the effects of both factors in combination,
whereas the K-W one-way ANOVAs collapse the data.

4.4.1 Question 1: “The Given Products Were Useful to Create
Solutions”. Participants were asked to rate the usefulness of the
example products during idea generation process (Fig. 14). For
the no-noise condition, the usefulness rating initially increases
with additional analogs and decreases in the 5-analogs condition.
For the noise condition, the usefulness rating peaks in the 2-
analogs condition, while there is a linear increase for the 1-, 3-,
and 5-analog(s) conditions. Participants in the noise conditions

felt fewer of the products were useful to create solutions (chi-
square¼ 3.95, p¼ 0.047), and the number of analogs also
influences this (chi-square¼ 18.80, p< 0.001). Table 10 shows
the post-hoc Tukey HSD test result for different analog
conditions.

4.4.2 Question 2: “I Used the Given Products to Generate
Solutions”. Participants were asked to rate whether they used the
example product for idea generation (Fig. 15). Participants
indicated that they used the products the most in the 3-analogs
condition for the no-noise condition and the 2-analogs condition
for the noise condition. Participants in the noise conditions also
said they used fewer of the products to create solutions (chi-
square¼ 8.6, p¼ 0.003), and the number of analogs influenced
this (chi-square¼ 19.30, p< 0.001). Table 11 shows the post-hoc
Tukey HSD test result for different analog conditions.

4.4.3 Question 3: “I Found the Similarity Rating Tasks
Hard”. Participants were asked if they found the similarity-rating
tasks hard (Fig. 16). Recall that there were two similarity-rating
tasks. The first task asked participants to rate the similarities
between features used and features not used for each example
product they used for ideation. The second task asked participants
to rate the similarities between their solutions and example prod-
ucts they received during ideation. The answer to this question
would provide information about whether the participants had

Table 9 2-way ANOVA and Levene’s homogeneity test results for postexperiment survey

Question 1 Question 2 Question 3

“The given products were
useful to create solutions”

“I used the given products to
generate solutions”

“I found the similarity
rating task hard”

df F Sig df F Sig df F Sig

Homogeneity 0.006 0.139 0.168
Number of analogs 3 9.31 <0.001a 3 9.92 <0.001a 3 0.893 0.451
Noise 1 12.1 0.001a 1 6.05 0.017a 1 0.216 0.644
Interaction 3 3.88 0.014a 3 3.18 0.031a 3 0.749 0.528
Error 56 56 56

aSignificant difference.

Fig. 14 Rating of example product’s usefulness, error bars
show 6 one standard error

Table 10 Post-hoc test for example product’s usefulness

1-Analog 2-Analogs 3-Analogs 5-Analogs

1-Analog <0.001a 0.007a 0.014a

2-Analogs 0.18 0.11
3-Analogs 1.0
5-Analogs

aSignificant difference.

Fig. 15 Rating of use of given example products, error bars
show 6 one standard error

Table 11 Post-hoc test for use of given example products

1-Analog 2-Analogs 3-Analogs 5-Analogs

1-Analog 0.001a 0.002a 0.69
2-Analogs 0.95 0.007a

3-Analogs 0.050
5-Analogs

aSignificant difference.
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difficulty judging whether two features are fundamentally similar.
The mean responses did not show much variation and were
somewhere between “neutral” and “agree.” The lack of variation
suggests that the participants found comparing elements on a one-
to-one basis just as difficult, regardless of how many items were
being compared.

5 Discussion and Study Limitations

This section addresses the proposed hypotheses based on the
findings in Sec. 4. The proposed hypotheses are as follows: the
ideation quantity and analog transfer (1) improve with an increas-
ing number of analogs and (2) diminish under noise.

5.1 Number of Analogs. As presented in Sec. 4, participants
generated more analog-based ideas and identified the high-level
principle more accurately when they were given multiple analogs
(Figs. 10 and 11). The postexperiment survey results also show
that the participants found the example products useful and used
them during ideation when they were given multiple analogs
(Figs. 14 and 15). These results agree with the previous experi-
ments in psychology, which conclude that using two analogs is
better than one in analogous mapping process [11,12,15]. Further-
more, the study shows that the ideation results do not increase lin-
early with increasing number of analogs, but change in a
parabolic manner as evidenced by the decrease in the 5-analogs
condition (Fig. 10). The same result occurs in the high-level rec-
ognition rate shown in Fig. 11. This finding raised a question:
Why does the number of analog-based ideas diminish in the 5-
analogs condition? It is appealing to hypothesize that more
analog-based ideas are generated as the availability of analogs
increases. In order to address the question, Fig. 17, displaying the
number of analogs used for ideation, was plotted to assess whether
the participants used all available analogs represented by a dotted

linear line. The figure shows that the quantity does not exceed
two, implying that there is an “upper limit” where the student
designers did not necessarily use more than two analogs to gener-
ate ideas. This is consistent with the post-hoc test results in that
the participants in the 2-, 3-, and 5-analogs conditions generated a
similar number of analog-based ideas because they used similar
number of analogs during ideation. The number of analog-based
ideas increases with multiple analogs, but eventually reaches a
“saturation point,” at which the ideation quantity starts to saturate
as the number of analogs increases. Furthermore, it was found that
86% of participants in the 5-analogs conditions with and without
noise stimuli used bungee blast, 36% used constant force spring,
29% used flour duster, 14% used compression spring, and none
used sticky note holder lid. Analogs were selected by researchers
based on their functional feature, but it was apparent in the study
that the participants favored the bungee blast over other analogs,
and completely overlooked the sticky note holder lid. These find-
ings raise some interesting research questions: How is the “upper
limit” or saturation point determined if the design problem has
more complex high-level principle? How do student designers
conceive of the excess analogs? What makes student designers
prefer one analog over other analogs during ideation? All these
questions motivate investigation in future studies. The only result
that did not demonstrate the discussed trend was the number of
ideas generated, as shown in Fig. 8. These results were not
affected by the number of analogs, suggesting that the quantity is
determined by other factors.

5.2 Presence of Noise. An interesting finding was observed
in Fig. 8, where the participants generated fewer ideas when they
were given additional noise stimuli. Similarly, the number of
analog-based ideas in the noise condition decreased by 26%, 42%,
35%, and 33% for the 1-, 2-, 3-, and 5-analog(s) conditions,
respectively (Fig. 10). The researchers recognize that the partici-
pants in the noise condition were provided a large selection of
stimuli (three times more stimuli than no-noise condition), which
could cause them to experience cognitive overload during idea-
tion. However, it is important to note that the number of analog-
based ideas decreased (Fig. 10), while the number of stimuli-
based ideas was not affected in the noise condition (Fig. 9). This
implies that the quantity of stimuli in the noise condition was not
completely detrimental to student designer’s working memory,
yet the noise stimuli distracted them from using the analogs to
generate ideas.

The effect of noise was not significant in the high-level principle
recognition rate (Fig. 11). An interesting finding was that the recog-
nition rate of the all-noise condition was similar to those of the 3-
and 5-analogs conditions, and even higher than that of the 1-analog
condition. In the all-noise condition, participants received 15 noise
products, among which 11 were pure noise and four were noise
with elasticity as a surface feature. Accordingly, a hypothetical
explanation is that the surface feature of the noise stimuli was as
effective as the functional feature of analogs in stimulating analogi-
cal reasoning, as exemplar-analogy theory posits [18]. In addition,
it is possible that the high-level principle—“store and release
energy through elastic deformation”—is sensitive to surface fea-
tures, as almost every object contains elasticity to some extent.
However, the researchers do not have a clear explanation for the
factors associated with the recognition of high-level principle, and
this could be addressed more clearly in future studies.

Although the understanding of the effect of noise on ideation
may be preliminary, the findings have important implications
for DbA research and practice. The total number of ideas and
analog-based ideas diminished when the student designers received
noise stimuli in addition to the analogs. This suggests that the ran-
dom stimuli consisting of extraneous information are unfavorable in
DbA practice, as they could distract the novice designers during
ideation. In this study, the level of noise stimuli was predefined, but
researchers anticipate that the noise level can be manipulated to
some extent by identifying the high-level principle(s), defining a

Fig. 16 Rating of difficulty of similarity task, error bars show-
6 one standard error

Fig. 17 Number of analogs used in idea generation, error bars
show 6 one standard error
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conceptual boundary between the analogs and noise stimuli, and
removing noise stimuli that are “far” from the high-level principle.
It also appears that presenting a relatively small number of analogs
(two or three), with as little as noise as possible, is likely to be
highly effective. These motivations call for future studies to investi-
gate strategic DbA methods or software for the selection of analogs.

5.3 Study Limitations and Future Studies. There are several
limitations in the study that are important to acknowledge. First,
the study showed that the student designers could recognize
high-level principle—“store and release energy through elastic
deformation”—from the functional feature of the analogs, as well
as the surface feature of the noise stimuli. This implies that the
noise with surface feature behaves partially as analog and partially
as pure noise, and thus posits a limitation in analyzing the noise
effect on ideation. Second, the researchers acknowledge that arbi-
trarily omitting a 4-analogs condition in the study may pose a limi-
tation in fully characterizing the effect of number of analogs, as the
trend between the 3- and 5-analogs conditions remains as a blind
spot. Third, although compensation is a standard practice in human
subject research, there may be a negative effect of tangible rewards
on the student designers’ ideation results [45]. The tangible and
intangible rewards need much consideration to minimize their
effects on the participants’ design outcomes in design research.
Fourth, the study was conducted with a sample of engineering stu-
dents that represent a skewed gender ratio (79% male and 21%
female), low age profile (average 22.6 years old), and limited full-
time work experience (4.8 months). Novice designers approach
design tasks differently from expert designers [46], which makes
the applicability of the study’s findings limited to novice designers.
Future studies need to consider a larger sample size across diversi-
fied gender, age, and expertise levels to gain a better understanding
of any demographic covariates impacting the findings.

6 Conclusions

The empirical results presented in this DbA study suggest that
ideation is largely dependent on the nature of examples, which can
be either an inspiration or a distraction during ideation process,
corroborating prior works [44,47,48]. This is consistent with prior
literature on both design fixation and inspiration [49,50]. We
extend the prior literature by identifying the interaction between
analogs and extraneous information and the ratio of the two. In this
study, ideation and analog transfer were evaluated by examining
the number of ideas (typical in design research) and recognition of
high-level principle (more typical in psychology). The effects of
analogs and noise on the number of ideas were significant, demon-
strating the importance of examples during ideation. Specifically,
the number of analog-based ideas increased when the student
designers were given multiple analogs, and a saturation point was
observed where additional analogs do not increase the quantity of
ideas generated. On the other hand, the number of ideas and
analog-based ideas decreased when the student designers were
given noise stimuli. Based on the empirical findings, the authors
anticipate that analog transfer, particularly for novice designers,
can be improved by providing them a set of multiple analogs of
sufficient quantity to communicate the high-level principle in the
absence of noise stimuli to eliminate distraction. As discussed in
Sec. 5, several limitations may hinder the finding’s applicability
and motivate further research to obtain a more extensive under-
standing of the effects of different types of stimuli on ideation. Yet,
the empirical results in this study add to the understanding of the
analogs and extraneous information in DbA.
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