
IOP PUBLISHING BIOINSPIRATION & BIOMIMETICS

Bioinsp. Biomim. 2 (2007) S182–S197 doi:10.1088/1748-3182/2/4/S07

From honeybees to Internet servers:
biomimicry for distributed management
of Internet hosting centers
Sunil Nakrani1,2 and Craig Tovey2

1 Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD, UK
2 School of Industrial and Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive, NW,
Atlanta, GA 30332-0205, USA

E-mail: Sunil.Nakrani@gatech.edu

Received 9 August 2007
Accepted for publication 10 August 2007
Published 16 October 2007
Online at stacks.iop.org/BB/2/S182

Abstract
An Internet hosting center hosts services on its server ensemble. The center must allocate
servers dynamically amongst services to maximize revenue earned from hosting fees. The
finite server ensemble, unpredictable request arrival behavior and server reallocation cost make
server allocation optimization difficult. Server allocation closely resembles honeybee forager
allocation amongst flower patches to optimize nectar influx. The resemblance inspires a
honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing
model in terms of information flow and feedback, analyzes the homology between the two
problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is
assessed for effectiveness and adaptiveness by comparative testing against benchmark and
conventional algorithms. Computational results indicate that the new algorithm is highly
adaptive to widely varying external environments and quite competitive against benchmark
assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some
general speculations are offered regarding their various degrees of success.

1. Introduction

The unrelenting growth of myriad Internet services coupled
with the ubiquitous Internet characterized by its open and
dynamic environment presents key challenges for designing
and managing Internet computing infrastructure on which such
services are hosted. A typical centralized Internet service
hosting center contains an ensemble of commodity servers
on which Internet services are hosted for a fee. Faced with
unpredictable Internet request traffic, the hosting center must
orchestrate its server ensemble amongst co-hosted services so
as to maximize revenue earned from hosting fees.

A honeybee colony faces a similar problem. Nectar
collection is an essential foraging activity, requiring typically
50–70 kg of nectar during summer and approximately 30–
50 kg reserve for winter survival. A honeybee colony
must orchestrate its foragers amongst flower patches (nectar
sources) so as to maximize nectar intake. However, as in
the case of a hosting center, forager orchestration must deal

with unpredictability of nectar supply and an unknown scale
of fluctuation from dearth to abundance.

We have proposed a biomimetic server orchestration
algorithm which performs well on a set of test cases [1]. The
inspiration for biomimicry was the remarkable resemblance
between the honeybee colony’s problem of allocating foragers
amongst flower patches to maximize nectar influx and the host
center’s problem of allocating servers amongst host customers
to maximize revenue. In this paper, we give details of the
server and forager orchestration problems and describe the
self-organizing honeybee solution. Next, we give details of
the two problems’ many similarities and probe the extent to
which the homology holds. Thence, we describe the self-
organizing biomimetic algorithm and highlight its information
flows and feedback mechanisms.

Biomimetic solutions should be assessed in comparison
with existing conventional solutions. We employ three
comparative benchmark algorithms along with simulation and

1748-3182/07/040182+16$30.00 © 2007 IOP Publishing Ltd Printed in the UK S182

http://dx.doi.org/10.1088/1748-3182/2/4/S07
mailto:Sunil.Nakrani@gatech.edu
http://stacks.iop.org/bb/2/S182

From honeybees to Internet servers: management of Internet hosting centers

Server EnsembleVirtual Servers

Banking

Weather

Auction

Retail

News

Se
rv

ic
es

Server EnsembleVirtual Servers

Banking

Weather

Auction

Retail

News

Se
rv

ic
es

Figure 1. Server ensemble orchestration at two distinct time instants.

request arrival models for computational testing. We assess
the solution quality over a considerably broader suite of
problems than considered previously [1]. Further, we test
the adaptiveness of the algorithm compared with conventional
methods. The biomimetic algorithm competes well in quality
and with distinction in adaptiveness. We conclude with a
brief survey of other swarm intelligence applications and
some general speculations regarding their various degrees of
success.

2. Internet hosting center orchestration

2.1. Internet host centers

A burgeoning World Wide Web (WWW) user population
depends upon the Internet for business-critical and day-to-
day activities. Internet traffic variability creates unusually
demanding scalability and availability requirements. Service
request traffic often exhibits bursts above the mean for lengthy
periods over a wide range of timescales, and varies in terms
of peak to trough by factors of more than 100 in less than an
hour [2]. As a consequence, Internet computing infrastructure
often entails centralized Internet hosting centers composed of
commodity server appliances, managing content delivery of
multiple co-hosted services to global users for a hosting fee
[3–5]. Given that the hosting fee may be negotiated on the
basis of requests served, maximization of the total requests’
revenue becomes the prime incentive of the hosting center.

2.2. Server orchestration problem

Server ensemble management, as depicted in figure 1, involves
orchestrating servers in the ensemble to serve requests for a
given co-hosted service. A group of servers serving requests
for a given co-hosted service make a virtual server which can
grow and shrink in capacity. For the entire time horizon,
orchestration decisions have to be made as to which servers in
the ensemble are part of which virtual servers. At any moment,
any server may be orchestrated to remain with its current
virtual server or to join another virtual server. If a server
is orchestrated to leave a given virtual server and join another,
then the server in question suffers a downtime during which it
earns no revenue. All these orchestration decisions have to be
made in the face of unknown and highly variable future request

arrivals for each of its co-hosted services. The average time
to serve a request and fee paid per request may differ for each
service. If, for a given service, the number of servers necessary
to serve the present demand is not orchestrated, then requests
in the queue will spend time waiting to be served. This will
increase the average service response time and may influence
whether a customer is willing to wait for a response. A revenue
opportunity is lost if a customer balks.

Suppose an Internet hosting center with N servers co-
hosts M Internet services. There are M virtual servers
V1, . . . , VM , hosting Internet services with respective service
request queues Q1, . . . ,QM buffering streams of arriving
requests. Each virtual server Vi is composed of ni servers,
ni � 0, such that

∑M
i=1 ni = N. The unit of orchestration is a

single server and the cost of orchestration is some fixed time
units, i.e. the server becomes unavailable for this fixed time
interval as it undergoes the repurposing process. Discretize
the time horizon into T time steps indexed by t = 1, . . . , T

and let St denote the state of the system at the start of
time step t, including the server membership of the virtual
servers V1, . . . , VM , status of any unavailable servers and
residual requests in the queues from the time step t − 1.
Let At = {

at
1, . . . , a

t
M

}
denote the request arrivals during a

time step t and πt = {
πt

1, . . . , π
t
M

}
denote the server ensemble

orchestration policy for a time step t. Let R(πt , S,A) denote
the revenue earned by an orchestration policy πt during a time
step t with the initial state S and arrivals A, and similarly
let f (πt , S,A) denote the state of the system which would
eventuate at the start of the (t + 1)st time step. Thus, the server
orchestration problem is

Maximize:
T∑

t=1

R(πt , St , At) (total reward)

Subject to:

St+1 = f (πt , St , At) (orchestration, request traffic),

and since At are not known in advance, the problem is not
deterministic.

2.3. Related work

The problem of dynamically orchestrating resources as
unpredictable requests arrive has been studied in a general

S183

S Nakrani and C Tovey

Fl
ow

er
 P

at
ch

es

Forager EnsembleForaging Sites

Fl
ow

er
 P

at
ch

es

Forager EnsembleForaging Sites

Figure 2. Foragers’ orchestration at two distinct time instants.

abstract context as the K-server problem [6]. In this
formulation, we are given a metric space S and K mobile
servers that reside at points in S. When a request arrives at
point x ∈ S it must be processed by moving one of the K
servers to x, at a cost equal to the distance moved in S. The
objective is to minimize cost in serving a sequence of requests.

Dynamic resource orchestration has been well studied
in the context of effectively exploiting available resources to
realize certain performance goals. Several papers address the
problem of sharing processor resources between competing
applications to improve throughput and/or real-time response
[7–13]. Numerous papers focus on sharing processors in
distributed systems of networked machines for throughput
[14–22]. However, these research efforts focus on sharing
CPU cycles amongst competing applications as opposed to a
whole server being shared in a serial manner and, moreover,
they do not consider orchestration downtime cost.

A smaller number of papers have considered the problem
in a context similar to that described in this paper. Wolf and
Yu [23] propose a server orchestration algorithm for the case
where a single server can handle requests for multiple services,
and the performance objective is to minimize response time
by load balancing. Farias et al [24] formulate the server
orchestration problem in a dynamic programming framework,
but propose an approximate linear programming solution given
that the dynamic programming approach is computationally
infeasible. It computes an orchestration policy based on a
specific arrival rate model. In contrast, we do not make
any a priori assumptions regarding request arrivals to make
orchestration decisions. Palmer and Mitrani [25] examine
the server orchestration problem and propose non-optimal
heuristics that are easily implementable. However, only a
simple case of hosting two services with a total of nine servers
is considered. Chase et al [3] propose an economic approach
to server allocation for cases where energy conservation is
the primary goal. Appleby et al [26] propose a service
level agreement (SLA) based approach, where monitoring
agents provide load and performance feedback to a central
resource director which makes orchestration decisions. In our
approach, feedback is provided by all servers in the hosting
center but individual servers are responsible for their own
orchestration decisions.

Finally, Jayram et al at IBM [5] prove that no finite
competitive ratio guarantee is possible for any orchestration
algorithm which has no knowledge of the future. The authors
give a theoretical algorithm which, like our optimal omniscient
algorithm, described in section 7.1, requires knowledge of the
future and hence cannot be used in practice. They also describe
a related heuristic which does not require such knowledge
but apparently was not implemented or tested at the time.
Their heuristic turns out to be of precisely the same type as
our greedy orchestration algorithm, described in section 7.1,
since it employs a forecasting module, details of which are not
described. This confirms that our greedy algorithm provides a
good comparative base for classical optimization methods.

3. Honeybee (Apis mellifera) colonies: forager
orchestration problem

A typical honeybee colony contains approximately 20 000–
50 000 bees with one queen, a few drones and the rest workers.
Nectar collection is a principal foraging activity given that
during summer the colony consumes approximately 70 kg of
nectar, and approximately 50 kg of additional nectar is needed
as a reserve for winter survival without which the queen freezes
and the colony dies.

In colder climate zones such as Northern Europe, nectar
is effectively available only in the summer for about 12 weeks
each year. During this critical time period, a honeybee colony
must orchestrate its foragers among the blooming flower
patches in the surrounding countryside to collect the nectar it
requires. However, the availability of nectar is unpredictable
and the scale of fluctuation from dearth to abundance is
unknown. From hour to hour and day to day, the availability
and quality of nectar vary with micro-climatic conditions, sun
position, blooming/withering cycle and exploitation. It is
not uncommon for a colony’s nectar intake rate to fluctuate
by a factor of more than 100:1 within a day or so [27]. As
illustrated in figure 2, given the volatility of nectar supply, the
colony must make time-varying orchestration decisions as to
the numbers of foragers to be deployed at each known flower
patch. A forager bee can transfer from one flower patch to
another, but the forager in question requires time to learn the

S184

From honeybees to Internet servers: management of Internet hosting centers

Hive Hive
Unloading Nectar A Unloading Nectar B

Idling Foragers
and

Scouts

Dance Observers

Dancing for Dancing for
Nectar Source A Nectar Source B

Foaging

Nectar Source A Nectar Source B

New Nectar Source

Scouts

Foragers Foragers

Foraging Foraging

Hive: New Nectar Source Information Flow

Figure 3. The information flow and decision processes in a honeybee colony (adapted from Seeley [27]).

location of the new flower patch during which she makes no
contribution to colony’s nectar collection endeavors.

Consider a honeybee colony with N nectar foragers and
M flower patches. Let function fi(xi) denote the total value
returned from the ith flower patch by xi foragers collecting
nectar at the patch. Provided the value functions fi() do not
change over time, the resulting static forager orchestration
problem is

Maximize:
M∑
i=1

fi(xi) (value function)

Subject to: xi � 0 (orchestration)
M∑
i=1

xi � N (foragers).

Applying standard calculus yields the optimal static solution
conditions f ′

i (xi) = λ∀xi > 0, f ′
i (0) � λ∀xi = 0. That is,

the marginal contributions are equal at each flower patch that
is actively being foraged. The Lagrange multiplier λ is the
value of these marginal contributions, whilst the the marginal
contributions at inactive patches are �λ. This is intuitive since
if the marginal contribution f ′

i (xi) at the flower patch i exceeds
the marginal contribution f ′

j (xj) at an active flower patch j ,
then more nectar could be obtained by orchestrating a forager
from the flower patch j to i. The intuitive explanation is
similar to that of the so-called marginal value theorem (MVT)
[28]. The MVT is usually cast in terms of a single forager
deciding when to select a different patch, although that casting
neglects the cost of travel between patches. Instead, to see the
parallel, think of a single forager deciding how to allocate its
time among patches as being analogous to the hive ‘deciding’
how to allocate its forager bees among patches. Note that the
value functions fi(xi) do incorporate the cost of travel between
hive and patch.

The problem faced by the honeybee colony is more
challenging than the static version outlined above, and is akin
to the Internet host problem described previously. Flower
patch availabilities and profitabilities are highly variable, but
responsiveness, i.e. the rate at which foragers are recruited to
another patch, must be traded off against the temporary loss of
the forager’s productivity when she is recruited to a different
patch.

4. Self-organizing honeybee forager orchestration

Colonies of social insect possess what has been classed
as swarm intelligence [29]. A broad definition of the
term implies a sophisticated collective behavior borne out
of primitive interactions among members of the group to
solve problems beyond the capability of individual members.
Such colonies are characterized by (i) self-organization:
decentralized and unsupervised coordination of activities, (ii)
adaptiveness: response to dynamically varying environments
and (iii) robustness: accomplishing the group’s objective even
if some members of the group are unsuccessful.

A model of self-organizing behavior that takes place
within a colony of honeybees has been presented by Seeley
[27]. The model describes interactions between members
of the colony and the environment that leads to dynamic
distribution of foragers to efficiently collect nectar from an
array of flower patches that are capricious in terms of their
value to the colony. The honeybee colony, as depicted in
figure 3, acquires information with respect to foraging
prospects in the surrounding countryside continuously and acts
upon this information in concert with nectar requirements of
the colony to orchestrate foragers amongst prospective flower
patches. The self-organizing behavior model comprises the
following key elements.

S185

S Nakrani and C Tovey

Information procurement. A honeybee colony continually
refreshes information relating to known (currently being
foraged) and any new enticing flower patches. A forager bee
collecting nectar at a flower patch returns with information
about the patch, while a scout discovers a new flower patch
and returns with information.

Information type. On each visit to a flower patch, the
forager bee returns to the hive with collected nectar as well as
value (based on variables such as nectar sugar concentration,
nectar bounty, distance from the hive and an internal scale
of quality) and location (geographical location of the flower
patch) information.

Information filtering. With a large volume of information
influx, a colony selects the information pertaining to high
value rated patches. The selection occurs as a consequence
of interaction between a retuning forager and a receiver bee
which sets filtering threshold.

Information broadcast. If filtering threshold permits, each
forager will broadcast information about her patch by
performing waggle dance on the dance floor inside the beehive.

Information emphasis. A forager bee combines the decision
to waggle dance with a value rating to present the information
that conveys the degree of goodness and location of her patch.
Goodness of a patch is exhibited by a greater number of waggle
runs, while the location is exhibited by the orientation of the
waggle run and the number of waggle turns in a run.

Information audience. The information is consumed by
idling foragers who are potential candidates for deployment to
flower patches. Scouts and an active forager do not use this
information.

Information utilization. An idling forager randomly selects a
dance, follows it to learn the location of the patch and leaves
the hive to collect nectar.

Fundamentally, the self-organizing forager orchestration in a
honeybee colony emerges due to information flow into the
colony and its response to this information. In summary,
foraging bees visiting flower patches return to the hive with
nectar and with a value rating (function of nectar quality,
nectar bounty and distance from the hive) of respective flower
patches. At the hive, forager bees interact with receiver
bees to offload collected nectar. This interaction provides
feedback on the current status of nectar flow into the hive.
This feedback mechanism sets a response threshold for an
enlisting signal. An amalgamation of response threshold and
value rating influences the length of the enlisting signal known
as the waggle dance. The waggle dance is performed on the
dance floor where inactive foragers can observe and follow.
Effectively, each active forager bee provides feedback on her
local flower patch while observing bees have access to the
set of attractive food sources being capitalized by the colony.
However, individual foragers do not acquire the full set of
global knowledge but rather randomly select a dance to observe
from which they can learn the location of the flower patch and
leave the hive to forage. The self-organizing proportionate
orchestration pattern, derived from multiple and proportionate

feedback on goodness of food sources, is described by Seeley
et al [30] and validated by experimental study on a natural
honeybee colony. The model given by Bartholdi et al [31]
predicts a steady state pattern of forager orchestration where
the rate of value accumulation equalizes among forage sites
being exploited, i.e. self-organizing orchestration results in
equal average nectar return fi (xi)

xi
= µ ∀i, where fi(xi) denotes

the value returned from xi foragers collecting nectar at the ith
forage site.

5. Homology: an Internet hosting center and
honeybee colony

A cursory glance at the server and forager orchestration
problems, as depicted in figure 4, would suggest a similarity
between the two problems, at least on a superficial level. The
server ensemble in an Internet hosting center is analogous to
forager bees in a honeybee colony, whilst the service request
queues pertaining to co-hosted Internet services are analogous
to sources of nectar to be exploited profitably.

An in-depth examination at finer granularity revealed a
remarkably close mapping between the two problems, as
illustrated in table 1. The strong homology between the
server and the forager orchestration problems motivated our
biomimetic approach. One common characteristic is that
in each problem, the supply—service requests and nectar—
changes unpredictably over time. Request streams are variable
due to fluctuating request arrival rates and balking behavior
of users waiting for service, whilst flower patches are variable
due to fluctuations in micro-climate, quality, density and nectar
replenishment rates.

Another characteristic that is shared by two problems
relates to over-allocation and degradation in revenue/nectar
collection rate. The amount of time required by a server
to earn revenue from a hosted Internet service will depend
on the service characteristics as well as the total number
of servers servicing a given request queue. If more servers
are orchestrated than necessary to a service, the revenue rate
will degrade due to each server having to wait longer to find
a request to serve. Similarly, the amount of time needed
by a forager to return with a nectar payload depends on
characteristics of the forage site as well as on the number of
foragers collecting nectar there. The rate of nectar payload
being returned to the colony will degrade if overly many
foragers are orchestrated to the site since each forager will
take longer to find flowers whose nectar has been replenished
but not yet harvested. There is an additional lovely parallel
between the two problems. If a honeybee makes repeated visits
to a flower patch, she improves her ability to extract nectar
from that particular kind of flower [27]. If a server repeatedly
serves customers of the same type, its service speed for that
type of customer tends to increase, because of the storage of
data in its caches [32].

Let us explore the accuracy of this aspect of the homology.
In the case of a honeybee colony, let fi(xi) denote the number
of nectar loads returned per minute by a total of xi bees devoted
to foraging at the ith flower patch. For simplicity, we suppress
the index i and normalize the nectar quality. Let T denote

S186

From honeybees to Internet servers: management of Internet hosting centers

Server Ensemble Forager Ensemble

Forage Sites

F
lo

w
er

 P
at

ch
es

Banking

Weather

Auction

Retail

News

Virtual Servers

S
er

v
ic

es

Figure 4. Server and forager orchestration problems.

Table 1. Parallels between server and forager orchestration problems.

Internet hosting center Honeybee colony

An ensemble of N servers An ensemble of N nectar foragers

Unit of orchestration: single server Unit of orchestration: single nectar
forager

Co-host M Internet services to be M distinct flower patches in the
accessed by requests surrounding countryside

A group of servers (virtual server) with the A group of nectar foragers
same Internet service application serving collecting nectar at a specific
requests from a specific service queue flower patch

Time to service a request will be dependent Time to travel will be dependent
on the Internet service application on the location of the flower patch

Time taken by a server to find a request Time taken by a forager to collect
to serve at an Internet service application nectar at a flower patch increases if
increases if the number of servers in the group the number of foragers in the group increases
increases

A server orchestrated to another Internet A forager orchestrated to another
service incurs downtime due to purging of flower patch incurs downtime due
current and installation of new Internet to time spent learning the location
service application/data and successful discovery of the patch

An Internet service application and its A flower patch has the quality of
requests have a value-per-request nectar (sugar concentration)

Variable rates of requests arrival Variable rates of flower patch
and balking behavior quality, density and replenishment

A server repeatedly serving requests of A forager repeatedly foraging on
the same type results in improved flowers of the same type results in
response time improvement in its ability to extract nectar

the travel time from the patch to the hive and back (including
nectar unload time). Hence, of the x/f (x) minutes required
by a single bee to collect and deliver a nectar load, the fraction
1 − Tf (x)/x is spent collecting at the patch. Therefore (on
average) x−Tf (x) bees are at the flower patch at any time, and
the forage time of a single bee is x/f (x) = T +w(x −Tf (x))

minutes, where w(y) denotes the (steady state) time to collect
a nectar load if y bees are actively foraging there. One may

recover f (x) from w(y) via

f (x) = f

(
y +

yT

w(y)

)
= y

w(y)
. (1)

In the case of an Internet hosting center, f (x) denotes
the revenue rate per minute of x servers in the virtual server
V serving requests from service queue Q and T denotes the
service processing time for V . In this case equation (1)
represents the revenue-earnings time of a single server, where

S187

S Nakrani and C Tovey

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 20 40 60 80 100 120 140 160

To
ta

l R
ev

en
ue

Servers

Internet Hosting Center

0
100000
200000
300000
400000
500000
600000
700000
800000
900000
1e+06

0 50 100150200250300350400450500

To
ta

l N
ec

ta
r

In
fl

ux

Bees

Honey Bee Colony

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

0 20 40 60 80 100 120 140 160

R
ev

en
ue

 P
er

 S
er

ve
r

Servers

1500

2000

2500

3000

3500

4000

4500

5000

5500

0 50 100 150 200 250 300 350 400 450 500

N
ec

ta
r

In
fl

ux
 P

er
 B

ee

Bees

Figure 5. Revenue and nectar influx functions of a honeybee colony foraging at a single flower patch and an Internet hosting center serving
requests of the same type at a hosted service.

w(y) denotes the (average) waiting time for one server
amongst y to acquire a customer from queue Q.

Thus, the cycle times of both bee and server have the
same functional description. We now show that the functions
w() and hence f () have similar qualitative behavior in the
two cases. For the honeybee colony, w(1) is the nectar load
collection time from the patch with one bee collecting nectar.
Now, if two bees are collecting nectar from the flower patch,
then there is a slight possibility of interference due to the
activity of each bee. One bee will collect nectar from a specific
flower whose nectar will be replenished with some delay. Soon
afterwards, the other bee may attempt to collect nectar from
the said flower with an outcome that it will fail to find any
nectar and will lose time to try another flower. Therefore,
w(2) � w(1) because of the slight interference effect. If a
third bee were collecting nectar as well, the other bees would
experience an additional interference effect because she would
deplete additional flowers (we are neglecting the second-order
effect of interference reducing interference rates.) Thus,
w(3) � w(2). By the same reasoning, for small values of
y (relative to total flower patch nectar replenishment rate N
loads/min), we have w′(y) � 0.

In the case of two servers at a virtual server of the Internet
host center, each takes an available request from the service
queue, but a slight interference effect can be triggered when
Q contains exactly one request. Thus, w(2) � w(1). More
generally, for small values of y the interference effect increases
in y but is not large since it can only occur if at least one but
fewer than y requests are present in the service queue. Thus, as
with the honeybees, we have w′(y) � 0. At the other extreme,
if y

w(1)
� N , the foraging capacity will essentially saturate

the patch’s nectar production. Thus, w(y) ≈ y

N . In the host

center, if y

w(1)
� N the virtual server will essentially lose zero

requests to balking, and thus again w(y) ≈ y

N . At intermediate
values y � w(1)N , it is not so clear how the function behaves.
Interference effects force w(y) > w(1), but nectar harvesting
(respectively customer service) should be close enough to
saturation that one additional forager (respectively server)
increases nectar (respectively revenue) collection only slightly;
thus

[
y

w(y)

]′ � 0 whence w′(y) � w(y)

y
.

We developed a simulation, since we could not obtain
empirical data, to test bees foraging at a flower patch. Flowers
were modeled as points in a grid, which replenish nectar at
some rate; bees were modeled as traveling randomly from
the grid cell to the neighboring cell, until a full load is
collected. Other model parameters included number of flowers
in the patch, nectar extraction time and round trip time. We
performed a simulation run for each increment in allocation of
a bee to the flower patch over a 24 h time horizon and collected
performance data. The plot of total nectar influx and nectar
influx per bee for varying allocations of bees to the flower
patch is depicted in figure 5 (honeybee colony).

For the case of the Internet host, we ran the hosting center
simulation model [33] over a 24 h time horizon with one
virtual server and an inhomogeneous Poisson (IP) request
stream distribution, for each increment in server allocation
to the virtual server. Figure 5 (Internet hosting center)
illustrates the total revenue and revenue per server for varying
allocation of servers. The simulations confirm our analysis.
The qualitative behaviors of the functions are similar in the
two cases. However, in the Internet hosting center data the
functions appear nearly piecewise linear with a single break
point, whereas the slopes in the honeybee data do not change
rapidly. In other words, the second derivative spikes much

S188

From honeybees to Internet servers: management of Internet hosting centers

Virtual Server A

Post Advert for A Post Advert for B

Read Advert Read Advert

Scout

Scout
Forager Forager

Virtual Servers
Hosted Services:

Request Type A Request Type B

Serve Request A Serve Request B

Forager/Scout Forager/Scout

Virtual Server B

Hosting Center: New Virtual Server Information Flow

Figure 6. The information flow and decision processes in an Internet hosting center.

more in the Internet center case. The homology fails at this
level, although admittedly past the scope of our empirical
observation.

The break point for the Internet center occurs roughly at
the point at which the traffic intensity (the ratio of customer
demand to server capacity) equals 1. Past that break point,
a negligible fraction of customers are not served, and the
downward slope of the revenue per server simply reflects
an increasing number of servers sharing a very nearly fixed
customer pool. The same qualitative behavior occurs with the
honeybee simulation data, for the same reason. The break
point is smoothed out because the interference effects are
greater. The difference in interference effects is due to the
search time expended by the honeybee to identify and travel
to a nectar-laden flower; in an Internet server, the process of
matching an available server to an available customer is almost
instantaneous.

Thus, there are many close parallels between the
problems. Based on our simulation tests, the homology begins
to lose accuracy at the level of the nature of the interference
effects. The net revenue and net nectar influx functions do have
the same rough qualitative behavior, increasing fairly rapidly
and then flattening out. However, the nectar influx flattens
out considerably more gradually. The functions and their first
derivatives are not greatly different, but the second derivatives
are.

6. Biomimetic server ensemble orchestration
algorithm

A self-organizing server ensemble orchestration algorithm for
Internet hosting centers follows readily from the homology

that we have exposed. As in the case of the forager
orchestration in a honeybee colony, the biomimetic server
ensemble orchestration algorithm must acquire information
on an ongoing basis in respect of prospective co-hosted
Internet services and request load on their service queues as
illustrated in figure 6. To gather relevant information, we
mimic signals, cues and other mechanisms of a honeybee
colony. Each server in a hosting center is either a forager
or a scout server. The dance floor is represented by an
advertisement board. A waggle dance of some duration is
mimicked by an advertisement whose posting appears on the
advertisement board for some time length. Furthermore,
a flower patch location is represented by a virtual server
(service) identifier whilst waggle dancing and following a
waggle dance are mimicked by advertisement posting and
advertisement reading respectively. The biomimetic server
orchestration in an Internet hosting center relies on each
server generating information about its own service queue and
making it globally available, whilst all servers in the ensemble
have the opportunity to view this information and act upon it.
Basically, a server services requests and posts advertisements
of length varying with revenue potential. It regularly
checks its own revenue rate against the hosting center’s
and adjusts its probabilities of advertising or reorchestration.
To reorchestrate, a forager server will randomly select an
advertisement and migrate to the corresponding virtual server,
whilst a scout server will migrate to a random virtual server.

The behavior of any server in the hosting center is
controlled by the pseudocode of figure 7. A server si ∈ Vj ,
on completion of each request from Qj , will attempt with
probability p to post an advert on the advertboard with

S189

S Nakrani and C Tovey

[A] Initialization– si ∈ Vj serving Qj , Advert posting probability p,
Advert reading probability ri, Revenue rate interval Tpr ,
Advert reading interval Tr

[B] forever
[C] while Qj = Empty do

serve request;
if Tpr expired then

compute revenue rate;
adjust ri from lookup table;

if Flip(p) == TRUE then Post Advert;
if Tr expired && Read(ri)==TRUE then

/* randomly select an advert or a virtual server */
Select advert(if forager) or Virtual Server Vk(if scout);
Read advert id Vk(if forager);
if Vk = Vj then Switch(Vk);

endwhile
endforever

Figure 7. Behavior of a server in the biomimetic orchestration
algorithm.

Table 2. Rules for adjusting the probability of reading the
advertboard.

Revenue rate P[Read] ri

Pi � 0.5Phosting 0.60
0.5Phosting < Pi � 0.85Phosting 0.20
0.85Phosting < Pi � 1.15Phosting 0.02
1.15Phosting < Pi 0.00

duration D = vjA, where A denotes the advert scaling
factor. Also, it will attempt with probability ri to read
a randomly selected advert from the advertboard if it is a
forager or randomly select Vj , j : 0 . . . (M − 1), if it is
a scout. The probability ri is dynamic and changes as a
function of the forager/scout server’s own revenue rate and
the hosting center’s overall revenue rate. The revenue rate,
Pi , for a server si is given by Pi = vj Ri

Ti
, where Ri is the

total number of requests served by a given server in the
time interval Ti . The hosting center’s overall revenue rate,
Phosting, is given by Phosting = 1

Thosting

∑(M−1)
j=0 vjRj , where Rj

denotes the total number of requests served by Vj in the
time interval Thosting. A server si ∈ Vj serving queue Qj

determines its profitability by comparing the revenue rate Pi

with Phosting. It updates ri according to the rules shown in
table 2. These rules quantitatively model forager behavior in
real honeybee colonies, given that waggle dancing foragers
never get recruited to another patch and foragers use global
information (hive’s nectar intake rate cued by time to find a
receiver bee) to decide whether to dance or not. Thus, bees at a
profitable patch have a decreased chance of following another
waggle dance.

7. Assessing self-organizing server orchestration

In this section, we describe three additional orchestration
algorithms utilized for assessing comparative performance
of the self-organizing orchestration algorithm along with the
simulation model of an Internet hosting center, using all four
orchestration algorithms. We also describe a suite of request
arrival patterns utilized to simulate demands for co-hosted

Internet services. In our previous work, we have described the
assessment orchestration algorithms, the simulation model and
the request arrival suite in detail [33]. Below, we summarize
the assessment orchestration algorithms and simulation model
whilst expanding on the request arrival suite to encompass
a wider range of request patterns and variability in demand
intensity.

7.1. Assessment orchestration algorithms

The optimal omniscient algorithm provides an upper bound
on possible revenue. It computes, by dynamic programming,
the optimal server orchestration given complete knowledge
of future request arrivals. Assume that the time horizon
is split into t = 1, . . . , T time steps and let St denote the
system state at the start of step t, including the orchestration
of servers amongst services, and residual requests from time
step t − 1. Let At denote the request arrivals during
time step t and π denote an orchestration decision for
a time step. Let R(π, S,A) denote the revenue earned
by π during a time step with the initial state S and
arrival pattern A. Furthermore, let f (π, S,A) denote
the system state which would eventuate at the start of the next
time step, if the current step starts in state S, allocation π is used
and the arrival pattern is A. Define vT +1(ST +1) = 0, i.e. there is
no state-dependent salvage value at the end of the time horizon.
Then the value function for the omniscient orchestration
policy is vt (St) = maxπ {R(π, St , At) + vt+1(f (π, St , At))}.
The corresponding optimal orchestration policy is given by
πt

∗(St) = arg maxπ {R(π, St , At) + vt+1(f (π, St , At))}.
The greedy orchestration algorithm represents a

conventional heuristic approach to the problem. In particular,
the greedy policy chooses orchestration πt

G for time step t as
πt

G = arg maxπ R(π, St , At−1). The state is then updated
according to St+1 = f

(
πt

G, St , At

)
. Thus, the algorithm

chooses, for time step t, an allocation policy that would
maximize revenue if actual arrivals At were the same as the
previous arrivals At−1.

The optimal-static omniscient orchestration algorithm
omnisciently chooses the best from amongst all static
orchestrations. This is an upper bound on the current level
of revenue of many hosting centers, which often maintain
their orchestration decision for a month or so. Their
revenue will be lower since they do not know the coming
month’s request arrivals in advance. The policy is computed
by πstatic = arg maxπ

∑T
t=1 R(π, St , At). Thus, the same

orchestration π is used in every time step. The total revenue
is

∑T
t=1 P (πstatic, St , At).

7.2. Simulation model

We have developed the discrete event simulation model of an
Internet hosting center along with the four server orchestration
algorithms—self-organizing, optimal omniscient, greedy and
optimal-static. The simulation model is implemented in
C++SIM [34] on an IBM XSeries platform with a Linux
operating system. The following assumptions are common
to all orchestration algorithms: all servers are homogeneous
in terms of processing capacity and employ the first-come-
first-serve (FCFS) scheduling policy. The time to serve a

S190

From honeybees to Internet servers: management of Internet hosting centers

request is exponentially distributed with a mean service time
depending on the request type. Each server is paid a fixed
revenue per request served, the amount depending on the
request type. An orchestrated server becomes unavailable
for a fixed downtime [26]. Each service has an independent
request stream, which is held in its own queue. Each request
has a waiting threshold to receive service and on crossing
this threshold, a request randomly chooses to wait further or
balk. The request demand intensity offered to the hosting
center ranges from low (0.25), medium (0.7), high (1.0) to
super high (1.6). The request demand intensity is defined to
be 1

Serverscenter

∑VSM

i=1
Mean Service Timei

Mean Interarrival Timei
. Therefore, the mean

demand intensity of a given request arrival pattern over a
24 h period and the total number of servers in the hosting
center determine exponentially distributed mean time to serve
a request.

The response delay experienced by Internet service users
in receiving service plays a fundamental role in their behavior.
It is not uncommon for a user to balk or click away as a result
of excessive response delay. The balk manager simulates user
behavior for each co-hosted service in the hosting center by
continuously scanning the respective service queue at regular
intervals and randomly deciding with some probability to
expunge requests if waiting time in the queue has equaled
or exceeded some waiting threshold. The waiting threshold
represents user patience for receiving a response to a submitted
request whilst the request scanning interval represents how
often service users think about balking, having waited for at
least the waiting threshold. The balking probability represents
the chance that a user may then balk by canceling the request.
Nielsen [35] suggests that a delay greater than 10 s causes users
to become distracted and makes them more likely to click
away. The parameter balk rate represents how often users,
having waited more than 10 s for service, think about balking
and the parameter balk probability represents the likelihood of
balking on each occasion. Given that we have chosen a balk
rate of 1.01 s for each waiting user, a low balk chance of 4%
is chosen based on appropriate scaling.

Servers can be orchestrated at any time for the self-
organizing algorithm. One server per virtual server is a scout
and the rest are foragers, reflecting the low proportion of scouts
in real honeybee colonies [27]. A scout server randomly
orchestrates itself to one of the virtual servers in the hosting
center, whilst a forager server randomly orchestrates itself
in response to an advertisement read for a particular virtual
server. Each server in the hosting center advertises its own
virtual server by placing an advertisement on the advertisement
board with a given time duration. The advertisement board is
kept up to date by purging advertisements with expired display
time duration.

Servers using the optimal omniscient and greedy
orchestration algorithms are orchestrated at the beginning of
each time step and do not change until the beginning of the
next time step. In the case of the optimal-static omniscient
orchestration algorithm, a single orchestration decision is
taken at the beginning of time step 1 and this decision remains
unchanged for all other time steps. Consequently, servers do
not suffer any downtime.

The self-organizing and the greedy orchestration
algorithms compute orchestration decisions online, whilst
the optimal omniscient and the optimal-static omniscient
orchestration algorithms require orchestration decision to be
computed offline using trace data from request arrival patterns.
The common simulation parameters for the hosting center are
as follows. servers: 50; request waiting threshold: 10 s; balk
rate: 1.01 s; balk probability: 0.04; server downtime: 300 s;
time step length: 1800 s; revenue (cent): two services (0.1,
0.155), three services (0.1, 0.141 66, 0.1833), four services
(0.1, 0.133, 0.166, 0.2); the exponentially distributed mean
service time is a function of the request arrival pattern and its
demand intensity. Specific parameters for the self-organizing
algorithm are as follows: advertisement posting probability:
0.1, scouts per virtual server: 1, and the advertisement board
reading probability is given in table 2.

7.3. Request arrival suite

We have described a limited suite of request arrival patterns in
our previous work [33] that are representative of the Internet
request traffic characteristics. Here, we build on the existing
suite and give a expanded suite of request arrival patterns
encompassing different request behavior characteristics. The
expanded suite comprises five request arrival patterns of which
three are synthetically generated, one is generated from trace
data obtained from an international content provider offering
Internet services (a confidentiality agreement restricts us from
disclosing its name) and the last is generated from synthetic as
well as trace data patterns.

The real request arrival pattern is generated using logs of
request activity recorded over a 24 h period on servers hosting
Internet services. The simulated request arrival patterns are
drawn from the inhomogeneous Poisson process [2, 36] and
heavy tail distributions [37, 38]. The step request arrival
pattern is a reduced form of the inhomogeneous Poisson
process in which the process is either at the maximum or
at the minimum level of mean intensity controlled by a
ratio parameter which determines the peak-to-trough variation.
The heavy request arrival pattern is generated from Cauchy
distribution where the mean intensity is controlled by a scaling
parameter to limit its range to a manageable level of 0–45 000
requests per second given that the distribution has undefined
mean and standard deviation. The inhomogeneous Poisson
(IP) request arrival pattern is a true inhomogeneous process
where the mean request intensity can vary from 10–10 000
requests per second. In all three simulated request arrival
patterns, the mean request intensity is randomly chosen from
the allowable intensity range with a frequency of change
governed by a parameter that randomly selects an interval from
a defined range and upon expiry of this interval a change in
the mean request intensity is guaranteed to take place. Finally,
the hybrid request arrival pattern, as the name suggests, is
generated by combining real and simulated patterns where a
particular pattern is randomly chosen from step, heavy, real
or IP with a frequency of change governed by a parameter
that determines when a new pattern is to be selected, whilst
the behavior of the individual request pattern is as described
above.

S191

S Nakrani and C Tovey

8. Efficacy of the self-organizing algorithm

The principal aim of this section is to demonstrate the
adaptiveness of the self-organizing server orchestration
algorithm. Adaptiveness generally denotes attributes which
change depending on external circumstances in order to remain
effective in attaining an objective. In the context of an Internet
hosting center, adaptiveness denotes the selection of server
orchestrations over a lengthy time horizon so as to achieve
high revenue earning in response to demands from a wide
variety of traffic stream behaviors.

In order to demonstrate adaptiveness, we can vary the
external circumstances (traffic streams) of an orchestration
algorithm and observe the resulting revenue stream over a
lengthy time horizon. We assess the self-organizing algorithm
by comparing its revenue streams to theoretical and classical
(conventional) orchestration algorithms’ revenue streams in
response to demands from a wide variety of traffic stream
behaviors, intensity, co-hosting, service level agreements
(SLAs). We class the optimal omniscient and optimal-
static omniscient orchestration algorithms as theoretical since
they require knowledge of the future, whilst the greedy
orchestration algorithm is classed as conventional since it
requires knowledge only of past demands to select appropriate
orchestrations. The methodology entails designing and
conducting a series of experiments on the hosting center’s
simulation framework followed by reasoning about its
characteristics through comparative and statistical analyses.

8.1. Experimental methodology

The experimental methodology employs a multi-pronged
approach to evaluate the adaptiveness property of the self-
organizing algorithm. It considers simulation runs with
single unique seed values as well as multiple random seed
values across different orchestration algorithms and external
environments (traffic streams). The results are analyzed, and
a comparative revenue stream performance is given in terms
of other assessment algorithms. The statistical significance
of adaptiveness is analyzed using a nonparametric technique
known as the Wilcoxon matched-pairs signed-ranks test [39].
The technique takes into account the size and direction of
difference between matched pairs and tests the null hypothesis
that the difference between each pair has a median value of
zero. Briefly, to perform the test, we calculate differences
of each matched pair and rank order the difference by their
absolute value, i.e. giving one to the smallest difference, two
to the next smallest and so on with zero differences ignored
and all tied differences getting an equal rank order. Next,
we sum the ranks of the positive difference (W+) and sum the
ranks of the negative differences (W−). The test statistics is the
lesser of the two sums and if the null hypothesis were true and
there was no difference, then we would expect the rank sums
for positive and negative ranks to be identically distributed.
All experiments consider the case of co-hosting two, three
and four services with demand for service being driven by a
combination of five traffic stream types (step, heavy, real, IP
and hybrid), four levels of demand intensity (low, medium,
high and super high) and differentiated SLA fees amongst
services co-hosted.

Table 3. Normalized revenue stream performance of the
self-organizing algorithm aggregated across traffic streams (step,
heavy, real, inhomogeneous Poisson and hybrid) and demand
intensities (low, medium, high and super high) where for each
co-hosting instance (two, three and four services), n = 20 (5 × 4)
and for overall, n = 60 (5 × 4 × 3).

Hosting
∑n

i=1 Self-orgi∑n
i=1 Opt-omnii

∑n
i=1 Self-orgi∑n
i=1 Greedyi

∑n
i=1 Self-orgi∑n

i=1 Opt-stat omnii

Two-services 0.85 1.11 1.00
Three-services 0.80 1.07 0.98
Four-services 0.83 1.02 1.04
Overall 0.83 1.07 1.01

8.2. Comparative performance

We begin by considering the adaptive revenue stream of
self-organizing against the optimal omniscient, optimal-
static omniscient and greedy orchestration algorithms. We
ran simulations with the hosting center managed by each
orchestration algorithm in turn. The demand for service was
driven by step, heavy, real, inhomogeneous Poisson and hybrid
streams at four levels of demand intensity (low, medium,
high and super high). The simulation runs considered the
cases of co-hosting only two, three and four Internet services
with revenue stream performance data collected over a 24 h
simulation time horizon. Thus, the total number of simulation
runs for each algorithm is 60 (5×4×3) for each combination
of traffic stream, demand intensity and hosting instance. It
follows that for each hosting instance, 20 simulation runs
are possible (5 × 4) resulting from each combination of
traffic stream and demand intensity. These runs considered
single unique seed values for distribution used in traffic
stream generation, balk manager and respective orchestration
algorithms. In table 3, we give the performance of the
self-organizing algorithm normalized against the optimal
omniscient, greedy and optimal-static omniscient algorithms.
It is evident that the self-organizing algorithm performs well
against benchmark and conventional algorithms.

The simulation runs performed above considered only
a single initial seed value for distributions used in traffic
streams and orchestration algorithms. Therefore, to further
our understanding of statistical significance of the above
adaptive revenue stream performance, we now extend the
experiment where ten simulation runs are performed for each
instance of hosting (two, three and four), traffic stream (step,
heavy, IP and hybrid) and demand intensity (low, medium,
high and super high) with unique random [40] initial seed
values for distributions used in traffic streams and orchestration
algorithms. The hosting center is managed, in turns, by self-
organizing, greedy and optimal-static omniscient algorithms.
We did not consider the optimal omniscient algorithm for these
runs since it is apparent that it will always outperform other
algorithms and to avoid its time-space intensive offline policy
computation. Our extended experiment, therefore, entailed
480 (10 × 3 × 4 × 4) different seed values for each algorithm
with a total of 1440 (10 × 3 × 3 × 4 × 4) simulation runs
resulting from each combination of seed value, algorithm,
hosting instance, traffic stream and demand intensity. In
table 4, we give the normalized revenue stream performance

S192

From honeybees to Internet servers: management of Internet hosting centers

Table 4. Normalized revenue stream performance of the
self-organizing algorithm aggregated across traffic streams (step,
heavy, inhomogeneous Poisson and hybrid) and demand intensities
(low, medium, high and super high) where for each co-hosting
instance (two, three and four services), n = 160 (10 × 4 × 4) and
for overall, n = 480 (10 × 4 × 4 × 3).

Hosting
∑n

i=1 Self-orgi∑n
i=1 Greedyi

∑n
i=1 Self-orgi∑n

i=1 Opt-stat omnii

Two-services 1.03 1.01
Three-services 1.12 1.01
Four-services 1.03 0.99
Overall 1.06 1.00

of the self-organizing algorithm against the revenue stream
of the greedy and optimal-static omniscient algorithms. We
observe that the self-organizing algorithm outperforms the
greedy algorithm across each hosting instance and overall
whilst being competitive against the optimal-static omniscient
algorithm where it outperforms for two and three services
co-hosted and underperforms for four services co-hosted. In
table 5, we give the statistical significance of the adaptive
performance using the Wilcoxon matched-pairs signed-ranks
test. We observe that the adaptive revenue stream performance
of the self-organizing algorithm compared to the greedy
algorithm is highly significant overall. Against the optimal-
static omniscient algorithm, statistical significance is better
than 95% for two and three services co-hosted in favor of self-
organizing but in favor of optimal-static omniscient for four
services co-hosted whilst being insignificant overall.

In table 6, we illustrate the normalized adaptive
revenue stream performance of the self-organizing algorithm
against the greedy and optimal-static omniscient algorithms
whilst illustrating the statistical significance of the adaptive
performance in table 7. The adaptive performance is an
aggregate across the four traffic stream types and grouped
in terms of demand intensity (ρ) and services co-hosted at the
hosting center. Under this performance partitioning scheme,
the self-organizing algorithm consistently outperforms the
greedy algorithm in the overall category for all four levels
of demand intensity with statistical significance better than
99%. In the hosting category, it performs better than
the greedy algorithm for high and super high demand
intensities with statistical significance better than 99%, whilst
its performance is better than 99% significant for low and
medium intensities, except when the demand intensity is low
and two or four services are hosted or for medium demand

Table 5. Wilcoxon matched-pairs signed-ranks test for self-organizing against greedy and optimal-static omniscient aggregated across
traffic streams (step, heavy, inhomogeneous Poisson and hybrid) and demand intensities (low, medium, high and super high) where for each
co-hosting instance (two, three and four services), n = 160 (10 × 4 × 4) and for overall, n = 480 (10 × 4 × 4 × 3).

Wilcoxon matched-pairs signed-ranks test

(Self-org)–(Greedy) (Self-org)–(Opt-stat omni)

Hosting W + W− N �p-value W + W− N �p-value

Two-services 8951 2677 152 7.978 × 10−9 7572 3904 151 6.591 × 10−4

Three-services 12 502 378 160 5.433 × 10−25 6834 4491 150 2.801 × 10−2

Four-services 8863 4017 160 3.676 × 10−5 4528 6948 151 2.465 × 10−2

Overall 91 823.50 19 802.50 472 6.237 × 10−34 54 127 48 251 452 2.904 × 10−1

Table 6. Normalized revenue stream performance of the
self-organizing algorithm aggregated across traffic streams (step,
heavy, inhomogeneous Poisson and hybrid) where for each
co-hosting instance (two, three and four services), n = 40 (10 × 4)
and for overall, n = 120 (10 × 4 × 3).

ρ Hosting
∑n

i=1 Self-orgi∑n
i=1 Greedyi

∑n
i=1 Self-orgi∑n

i=1 Opt-stat omnii

Low Two-services 0.99 1.01
Low Three-services 1.04 1.01
Low Four-services 1.02 1.00
Low Overall 1.02 1.01

Medium Two-services 1.04 1.00
Medium Three-services 1.16 1.00
Medium Four-services 1.00 0.95
Medium Overall 1.07 0.98

High Two-services 1.05 1.02
High Three-services 1.21 1.02
High Four-services 1.04 0.99
High Overall 1.10 1.01

Super high Two-services 1.05 1.01
Super high Three-services 1.20 1.03
Super high Four-services 1.06 1.02
Super high Overall 1.10 1.02

intensity when four services are hosted. Against the optimal-
static omniscient algorithm, it performs competitively for
low, high and super high demand intensities whilst being
outperformed for medium intensity in the overall category.
However, performance is not statistically significant for low
intensity whilst being better than 95% statistically significant
for medium, high and super high intensities. In the hosting
category, it is outperformed for medium and high demand
intensities when four services are hosted whilst performing
competitively for all other instances. However, only on the
four hosting instance, the result is at least 95% significant.

We qualitatively observed that the self-organizing
algorithm exhibits a highly adaptive performance for most
conditions in comparison to the greedy algorithm. We also
qualitatively observe that its performance against the optimal-
static omniscient algorithm is competitive but mixed. We
emphasize that the optimal-static omniscient algorithm is
theoretical and cannot be implemented in practice as it requires
knowledge of the future. We believe that certain traffic stream
behaviors coupled with its omniscient property confer an
advantage to the optimal-static omniscient algorithm.

We hypothesize that rapidly variable traffic streams (mean
interarrival time changes often in relation to downtime) behave

S193

S Nakrani and C Tovey

Table 7. Wilcoxon matched-pairs signed-ranks test for the self-organizing algorithm against the greedy and optimal-static omniscient
algorithms aggregated across traffic streams (step, heavy, inhomogeneous Poisson and hybrid) where for each co-hosting instance (two,
three and four services), n = 40 (10 × 4) and for overall, n = 120 (10 × 4 × 3).

Wilcoxon matched-pairs signed-ranks test

(Self-org)–(Greedy) (Self-org)–(Opt-stat omni)

ρ Hosting W + W− N �p-value W + W− N �p-value

Low Two-services 278 250 32 8.007 × 10−1 353 143 31 4.058 × 10−2

Low Three-services 717 103 40 3.795 × 10−5 258 207 30 6.071 × 10−1

Low Four-services 535 285 40 9.424 × 10−2 194 302 31 2.944 × 10−1

Low Overall 4429 1849 112 2.414 × 10−4 2161 2117 92 9.333 × 10−1

Med Two-services 672 148 40 4.400 × 10−4 407 413 40 9.732 × 10−1

Med Three-services 809 11 40 8.510 × 10−8 373 447 40 6.237 × 10−1

Med Four-services 380 440 40 6.917 × 10−1 187 633 40 2.784 × 10−3

Med Overall 5595 1665 120 2.683 × 10−7 2714 4546 120 1.650 × 10−2

High Two-services 670 150 40 4.867 × 10−4 647 173 40 1.479 × 10−3

High Three-services 818 2 40 4.328 × 10−8 588 232 40 1.704 × 10−1

High Four-services 686 134 40 2.131 × 10−4 317 503 40 2.138 × 10−1

High Overall 6605 655 120 6.773 × 10−15 4323 2937 120 6.974 × 10−2

Super high Two-services 724 96 40 2.512 × 10−5 538 282 40 8.657 × 10−2

Super high Three-services 814 6 40 5.856 × 10−6 614 206 40 6.232 × 10−2

Super high Four-services 616 124 40 1.243 × 10−4 543 277 40 7.492 × 10−1

Super high Overall 6629 631 120 4.112 × 10−15 4965 2295 120 4.774 × 10−4

such that the self-organizing algorithm is penalized for being
responsive, that is, adapting to a condition which may only
have a short duration. It is better to be unresponsive when
conditions are highly dynamic as characterized by the optimal-
static omniscient algorithm which makes a single optimal static
orchestration decision based on complete knowledge of the
future traffic stream arrival behavior and does not attempt
to adapt for the rest of the time horizon. Therefore, under
highly variable arrival behavior, the optimal-static omniscient
algorithm is likely to outperform the self-organizing algorithm.
Conversely, if the traffic stream exhibits low variability
(a change in mean interarrival time is expected to last)
then it is advantageous for the self-organizing algorithm to
be responsive and adapt to changes in conditions whilst
the optimal-static omniscient will be penalized for being
unresponsive.

9. Application of swarm intelligence: a small survey

The swarm intelligence methodology has been applied in a
variety of domains, with varying degrees of success. Here we
briefly survey some of these applications, looking for common
patterns that may lead to success or failure.

Schoonderwoerd et al [41] developed an ant-colony-
inspired pheromone-laying algorithm to select the next path for
a message in a telecommunication network. The underlying
issue in this system is the selection of a specific path between
each source–destination pair so as to balance the load on the
different links in the network. Other researchers have explored
ant-colony-inspired methods for ‘connectionless’ network
routing problems, such as Internet routing, in which there
is no specific path (see [42] for a fuller explanation). Network
links can experience unpredictable congestion or failure. The

routing problem is even more dynamic in these connectionless
domains. Di Caro and Dorigo [43] imitate ant pheromone trail
laying and following behavior to dynamically route packets on
the Internet. The resulting algorithms are simple and intuitive.
Di Caro and Dorigo report that their performance is superior to
more complex alternatives in terms of throughput and packet
delay. Overall, dynamic network routing appears to be one
of the leading successes in swarm intelligence applications.
Other promising applications include image clustering and
segmentation [44], fault-tolerant vehicle scheduling [45] and
factory control/scheduling [46–48].

On the other hand, swarm intelligence has encountered
some notable failures. For example, Bonabeau and Meyer
[49] report that Enron established a swarm intelligence
management model in its energy trading business, which
produced a financial disaster of the first magnitude. The
ACO (ant colony optimization) traveling salesman algorithms
reported in [50–52] are heavily reliant on a different
optimization method, neighbourhood search, for their success,
but even so they are not remotely competitive with operations
research/computer science methods [53–55]. Shortest path
algorithms in computer science [56], likewise, outperform
any reinforcement or brute force parallel swarm intelligence
method by at least an order of magnitude.

What can we learn from these cases? It seems circular to
us to assert that swarm intelligence, or biomimicry in general,
is more apt to succeed if there is a close homology between the
biology and the application, for it begs the question of what
similarities make a good match between the two. A web-based
banking service seems no more like a flower patch than a raven
is like a writing desk. Yet, as demonstrated in this paper, and
in the references above, this and the ant-email analogies can
be successful.

S194

From honeybees to Internet servers: management of Internet hosting centers

We suggest that a biologically inspired solution to a
problem is appropriate when the essential difficulty of the
problem is similar to the challenge in the biological setting.
Consider the failure of ACO to compete with conventional
methods for the traveling salesman problem. The biological
inspiration is the ant colony’s problem of finding the shortest
path to the prey object. However, the essential computational
complexity of the shortest path problem is so vastly different
from that of the traveling salesman problem (see [57] or any
standard reference on computational complexity for detail)
that the analogy is not useful. Why then does ACO also
fail, though not so drastically, to compete with conventional
shortest path algorithms? The shortest path problem lacks a
principal difficulty faced by the ant colony. The ant colony
searches for prey objects that are in unknown locations. The
unknown state of the environment is a difficulty that has no
analog in the classical shortest path problem. In contrast,
searching for a short path in a network whose state is uncertain
does share the same essential difficulty. Thus, it may be less
surprising that ACO would perform competitively on dynamic
network routing problems. Note that some ant species do not
even behave in analogy to the shortest path problem, because
their foragers head directly toward the hive after discovering a
prey object, rather than retracing a path.

Consider the history of genetic algorithms (GAs) as
another example. Most GAs were computational disasters
until Storer et al [58] and others discovered how to mimic
evolution more thoroughly. Job shop scheduling was one
of the first successful GA applications. The problem is
particularly difficult because the time window, machine
availability and configuration, and precedence constraints
require many different portions of a schedule to coordinate.
A slight modification to a feasible schedule usually renders
it infeasible. In the language of GAs, almost all mutations
and crossovers are infeasible. This property stymies most
search procedures. Consider now the analogy with biological
evolution. One of the great difficulties of evolution is how to
maintain viability when one small change in an organism is
interrelated with many functions in many parts of the organism.
Biological evolution handles this difficulty, at least in part, by
not conducting its search in the space of the morphology of
the organism itself. Rather, DNA is like a code that produces
an organism, and evolutionary search takes place in the space
of DNA. For job shop scheduling, the schedule space should
not be the search space. Rather, one employs a code, usually a
simple heuristic, that produces feasible solutions and conducts
the GA search in the space of the code’s parameters.

Focusing now on swarm intelligence, we seek patterns
in the vicissitudes of its applications. One clue comes from
the successes and failures discussed in the non-technical book
‘The Wisdom of Crowds’ [59]. From a mathematical view,
the point of the book is that the law of large numbers is true.
That is, the sample mean of a large number of independent
observations converges to the true mean. If a large number of
people are asked independently to estimate the weight of an
ox or the number of cherries in a bowl, the sample mean is apt
to be quite accurate. On the other hand, mobs are infamous
for their collective stupidity. A mob’s opinion results from

self-reinforcing (positive) feedback loops rather than from
independent observations. In the Enron case, energy traders
recruited hundreds of others to engage in the same activity, but
the individual traders did not receive independent objective
feedback as to the profitability of their actions. In contrast,
each individual packet in a network ‘knows’ how successful
it is in arriving quickly to its correct destination. Despite
the stochasticity of the transit times, the aggregate measure,
namely the pheromone trail, which mathematically speaking is
simply a time-weighted sample mean (time-weighted because
the chemical dissipates), is apt to be quite accurate. The
same kind of accuracy is obtained through the aggregation of
sampling information in our honeybee algorithm, as it is in
natural honeybee colonies. See [60, page 789] for a similar
insight into aggregation of noisy or stochastic information.

Related to this feature is the presence or absence of
varying local information. This can be thought of as
varying information in space rather than in time (dynamicism).
We suggest that variability in (possibly virtual) space is
another feature which tends to make swarm intelligence
appropriate as a solution approach. This is because each of
the many individual agents can sense and react to its local
information, creating a non-homogeneous, locally adaptive
policy. For example, in the wireless network domain mobile
ad hoc networks are spatially and temporally formed by
an autonomous collection of mobile devices [61]. If both
of these features are present, a swarm intelligence solution
can be rapidly adaptive to changing local conditions. Such
situations seem particularly appropriate to this approach.
Some other prominent swarm intelligence methods also thrive
on variability of information. Particle swarm optimization
(PSO, see e.g. [62]) is noted for its ability to bypass local
minima because different particles tend to be in different
locales, but share information.

We suspect that another telling feature in these cases
is whether or not the parallelism is real or simulated. In
the ACO algorithms for combinatorial optimization problems
[52], the insect colony members are simulated on a computer.
The algorithms do not actually run on a myriad of small
cheap independent processors. In contrast, natural insect
swarms do contain thousands or millions of individual
insects, communications networks do handle a myriad of
individual packets on a large set of links and nodes, and
our Internet hosting center does contain many autonomous
servers. Stochastic diffusion search (SDS) was developed
and is particularly effective for problems in which the
objective is separable into many independent components.
Different agents in the SDS procedure may evaluate different
components. Parallelism is thus inherent in these separable
problems. We suggest that swarm intelligence is more likely
to be successful if the parallelism is inherent in the system to
be optimized, rather than artificially added on.

Finally, we observe that swarm intelligence seems to be
more successful when it implements at least one balancing
(negative) feedback loop. If swarm intelligence offers only
a positive feedback loop, i.e. of the form ‘if this activity is
good, do more’, then it provides only a weak and imprecise
thrust toward optimality. For example, positive feedback is an

S195

S Nakrani and C Tovey

inefficient way to maximize a linear function [63]. In contrast,
congestion creates negative feedback loops in networks, so that
in an optimal configuration different packets traverse different
routes. Similarly, in an optimal server allocation different
servers host different web services.

10. Conclusions

In this paper, we described the self-organizing honeybee
forager orchestration model and highlighted the resemblance
between the forager allocation and the server allocation
problems. We probed the homology between honeybee colony
forager allocation and Internet host server allocation that
inspired a new self-organizing biomimetic server orchestration
algorithm for management of Internet hosting centers. We
exposed many close parallels between the problems. We
also found a qualitative difference which appears at the rather
fine level of the second derivatives of the nectar and revenue
influx functions. The biomimetic algorithm adapts very well
under a variety of circumstances whilst being competitive
against benchmark assessment algorithms. We opine that the
adaptiveness of the algorithm is due to the tightly coupled
homology between the problems in the natural and human
domains.

Based on our experience and on a small survey of other
cases, we conjecture that the following conditions promote
the suitability and success of swarm intelligence applications:
inherent parallelism in the problem domain, presence of at
least one balancing (negative) feedback loop, noisy or variable
data—often temporally or spatially local—that tends to be
accurate in the aggregate and the need for rapid and effective
responsiveness to greatly changing circumstances.

Acknowledgments

We would like to thank Professor Tom Seeley at Cornell
University for providing invaluable insights into the workings
of honeybee colonies. We would also like to thank
the organizers of the 1st International Symposium for
Biologically-Inspired Design and Engineering (2006) at
the Georgia Institute of Technology and National Science
Foundation for financially supporting the symposium.

References

[1] Nakrani S and Tovey C 2003 Proc. 2nd Int. Workshop on The
Mathematics and Algorithms of Social Insects (Atlanta)
pp 115–22

[2] Arlitt M and Jin T 1999 Workload characterization of the 1998
World Cup web site Technical Report HPL-1999-35R1 HP
Laboratories

[3] Chase J, Anderson C, Thakar P and Vahdat A 2001 Proc. 18th
ACM Symp. on Operating Systems Principles (SOSP)

[4] Cherkasova L 1999 Technical Report HPL-1999-52(R.1) HP
Laboratories

[5] Jayram T, Kimbrel T, Krauthgamer R, Schieber B and
Sviridenko M 2001 Proc. STOC (Hersonissos, Crete,
Greece)

[6] Manasse M S, McGeoch L A and Sleator D D 1988
Competitive algorithm for online problems 20th Annual
ACM Symp. on Theory of Computing pp 323–33

[7] Banga G, Druschel P and Mogul J C 1999 Resource containers:
a new facility for resource management in server systems
Proc. 3rd USENIX Symp. on Operating Systems Design and
Implementation (OSDI) (New Orleans, LA)

[8] Dusseau A C, Arpaci R H and Culler D E 1996 Effective
distributed scheduling of parallel workloads ACM
SIGMETRICS’96 Conf. on the Measurement and Modeling
of Computer Systems

[9] Ford B and Susarla S 1996 CPU inheritance scheduling Usenix
Association Second Symposium on Operating Systems
Design and Implementation (OSDI) pp 91–105

[10] Jones M B, Rosu D and Rosu M 1995 Modular real-time
resource management in the Rialto operating system
Technical Reposrt MSR-TR-95-16 Microsoft Research

[11] Jones M B, Rosu D and Rosu M 1997 CPU reservations and
time constraints: efficient, predictable scheduling of
independent activities Symp. on Operating Systems
Principles pp 198–211

[12] Waldspurger C A and Weihl W E 1995 Stride scheduling:
deterministic proportional-share resource management
Technical Memorandum MIT/LCS/TM-528 MIT
Laboratory for Computer Science

[13] Waldspurger C A and Weihl W E 1994 Lottery scheduling:
flexible proportional-share resource management Operating
Systems Design and Implementation pp 1–11

[14] Dusseau A C and Culler D E 1997 Extending
proportional-share scheduling to a network of workstations
Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA’97)

[15] Buyya R, Abramson D and Giddy J 2000 Economy driven
resource management architecture for computational power
grids Int. Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA2000) (Las Vegas,
USA)

[16] Baker M, Buyya R and Laforenza D 2000 The grid:
international efforts in global computing Proc. Int. Conf. on
Advances in Infrastructure for Electronic Business, Science,
and Education on the Internet (31 July–6 August, L’Aquila,
Italy)

[17] Baratloo A, Dasgupta P and Kedem Z M 1995 CALYPSO: a
novel software system for fault-tolerant parallel processing
on distributed platforms Proc. 4th IEEE Int Symp. on High
Performance Distributed Computing HPDC-4

[18] Baratloo A, Itzkovitz A, Kedem Z M and Zhao Y 1998
Just-in-time transparent resource management in distributed
systems Technical Reposrt TR1998-762 Computer Science
Department, New York University

[19] Czajkowski K, Foster I T, Karonis N T, Kesselman C,
Martin S, Smith W and Tuecke S 1998 A resource
management architecture for metacomputing systems Proc.
IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for
Parallel Processing pp 62–82

[20] Dasgupta P, Kedem Z M and Rabin M O 1995 Parallel
processing on networks of workstations: a fault-tolerant,
high performance approach Int. Conf. on Distributed
Computing Systems

[21] Hill J M D, Donaldson S R and Lanfear T 1998 Process
migration and fault tolerance of BSPlib programs running
on networks of workstations European Conf. on Parallel
Processing

[22] Litzkow M, Tannenbaum T, Basney J and Livny M 1997
Checkpoint and migration of UNIX processes in the condor
distributed processing system Tech. Rep. 1346 Computer
Science Department, University of Wisconsin at Maddison

[23] Wolf J L and Yu P S 2001 On balancing the load in a clustered
web farm ACM Trans. Internet Technol. 1 231–61

S196

From honeybees to Internet servers: management of Internet hosting centers

[24] De Farias D P, King A J, Squillante M S and Roy B V 2002
Dynamic control of web server farms INFORMS Conf.–
Revenue Management Section (Columbia University,
New York, 13–14 June)

[25] Palmer J and Mitrani I 2003 Dynamic server allocation in
heterogeneous clusters Technical Report CS-TR: 799
School of Computing Science, University of
Newcastle

[26] Appleby K, Fakhouri S, Fong L, Goldszmidt G, Kalantar M,
Krishnakumar S, Pazel D P, Pershing J and Rochwerger B
2001 Oceano—SLA based management of a computing
utility 7th IFIP/IEEE Int. Symp. on Integrated Network
Management

[27] Seeley T 1995 The Wisdom of the Hive: The Social Physiology
of Honey Bee Colonies (Cambridge, MA: Harvard
University Press)

[28] Charnov E L 1976 Optimal foraging: the marginal value
theorem Theor. Pop. Biol. 9 129–36

[29] Bonabeau E, Dorigo M and Theraulaz G 1999 Swarm
Intelligence: From Natural to Aritificial Systems (Oxford:
Oxford University Press)

[30] Seeley T, Camazine S and Sneyd J 1991 Collective decision
making in honey bees: how colonies choose among nectar
sources Behav. Ecol. Sociol. 28 277–90

[31] Bartholdi J III, Seeley T, Tovey C and Vate J 1993 The pattern
and effectiveness of nectar forager allocation J. Theor. Biol.
160 23–40

[32] Pai V, Aron M, Banga G, Svendsen M, Druschel P,
Zwaenepoel W and Nahum E 1998 Locality-aware request
distribution in cluster-based network servers Proc. 8th ACM
Int. Conf. on Architectural Support for Programming
Languages and Operating Systems (ASPLOS-VIII)
(San Jose, CA, USA)

[33] Nakrani S and Tovey C 2004 On honey bees and dynamic
server allocation in internet hosting centers Adapt. Behav.
12 223–40

[34] Little M C 1994 C++SIM. University of Newcastle Upon
Tyne. http://cxxsim.ncl.ac.uk/

[35] Nielsen J 2000 Designing Web Usability (Indianapolis: New
Riders Publishing)

[36] Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S
and Zhao L 2002 Statistical Analysis of a Telephone Call
Center: A Queueing-Science Perspective,
http://stat.wharton.upenn.edu/∼haipeng/

[37] Crovella M E and Bestavros A 1997 Self-similarity in world
wide web traffic: evidence and possible causes IEEE/ACM
Trans. Netw. 5 835–46

[38] Gelenbe E (ed) 2000 Internet traffic: periodicity, tail behavior
and performance implication System Performance
Evaluation: Methodologies and Application (Boca Raton,
FL: CRC Press) chapter 2

[39] Conover W J 1980 Practical Nonparametric Statistics 2nd edn
(New York: Wiley) pp 278–92

[40] Haahr M 2005 Random Number Service,
http://www.random.org/

[41] Schoonderwoerd R, Holland O, Bruten J and Rothkrantz L
1996 Technical Report (HPL-96-76) HP Laboratories

[42] Merloti P 2004 http://www.merlotti.com/
EngHome/Computing/AntsSim/ants.htm

[43] Di Caro G and Dorigo M 1998 AntNet: distributed
stigmergetic control for communication network J. Artif.
Intell. Res. 9 317–65

[44] Ramos V, Muge F and Pina P 2002 Self-organized data and
image retrieval as a consequence of inter-dynamic
synergistic relationships in artificial ant colonies Proc. 2nd
Int. Conf. on Hybrid Intelligent Systems (Santiago, Chile)

[45] Bullnheimer B, Hartl R and Strauss C 1997 An improved ant
system algorithm for the vehicle routing problem Technical
Report POM-10/97 Institute of Management Science,
University of Vienna

[46] Cicirello V and Smith S 2001 Ant colony control for
autonomous decentralized shop floor scheduling Proc. 5th
Int. Symp. on Autonomous Decentralized Systems
(ISAD-2001)

[47] Cicirello V and Smith S 2001 Improved routing wasps for
distributed factory control Proc. Workshop on AI and
Manufacturing (IJCAI-01)

[48] Cicirello V and Smith S 2001 Wasps nests for
self-configurable factories Proc. 5th Int. Conf. on
Autonomous Agents (Agents 2001)

[49] Bonabeau E and Meyer C 2001 Harvard Business Review May
edition

[50] Dorigo M and Gambardella L 1997 Ant colonies for the
travelling salesman problem BioSystem 43 73–81

[51] Colorni A, Dorigo M and Maniezzo V 1991 Distributed
optimization by ant colony Proc. European Conf. on
Artificial Life (ECAL91) (Paris, France)

[52] Colorni A, Dorigo M, Maffioli F, Maniezzo V, Righini G and
Trubian M 1996 Heuristics from nature for hard
combinatorial optimization problems Int. Trans. Oper. Res.
2 1–21

[53] Aarts E and Lenstra J (eds) 1997 Local Search in
Combinatorial Optimization (New York: Wiley)
pp 215–310

[54] Applegate D, Bixby R, Chv’atal V and Cook W 1998 The
solution of traveling salesman problems Documenta
Mathematica 645–56

[55] Cook W 2006 Optimal tour of Sweden, available at
http://www.tsp.gatech.edu/sweden/index.html

[56] Cormen T, Leiserson C and Rivest R 1990 Introduction to
Algorithms (Cambridge, MA: MIT Press) pp 329–55

[57] Tovey C A 2002 Tutorial on computational complexity
Interfaces 32 30–61

[58] Storer R H, Wu S D and Vaccari R 1992 New search spaces for
sequencing problems with applications to job shop
scheduling Manage. Sci. 37 10

[59] Surowiecki J 2004 The Wisdom of Crowds: Why the Many Are
Smarter Than the Few and How Collective Wisdom Shapes
Business, Economies, Societies and Nations (New York:
Random House)

[60] Passino K 2005 Biomimicry for Optimization, Control, and
Automation (Berlin: Springer)

[61] Sesay S, Yang Z and He J 2004 A survey on mobile ad hoc
wireless network Inform. Technol. 3 168–75

[62] Clerc M 2006 Particle Swarm Optimization (London: ISTE)
[63] Goldberg D 1989 Genetic Algorithms in Search,

Optimization and Machine Learning (Reading, MA:
Addison-Wesley)

S197

http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1177/105971230401200308
http://stat.wharton.upenn.edu/$sim $haipeng/
http://www.random.org/
http://www.merlotti.com/
file:EngHome/Computing/AntsSim/ants.htm
http://dx.doi.org/10.1287/inte.32.3.30.39

	1. Introduction
	2. Internet hosting center orchestration
	2.1. Internet host centers
	2.2. Server orchestration problem
	2.3. Related work

	3. Honeybee
	4. Self-organizing honeybee forager orchestration
	5. Homology: an Internet hosting center and honeybee colony
	6. Biomimetic server ensemble orchestration algorithm
	7. Assessing self-organizing server orchestration
	7.1. Assessment orchestration algorithms
	7.2. Simulation model
	7.3. Request arrival suite

	8. Efficacy of the self-organizing algorithm
	8.1. Experimental methodology
	8.2. Comparative performance

	9. Application of
	10. Conclusions
	Acknowledgments
	References

