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This paper reviews and advances a data science framework for capturing and communicating critical
information regarding the evolution of material structure in spatiotemporal multiscale simulations.
This approach is called the MKS (Materials Knowledge Systems) framework, and was previously applied
successfully for capturing mainly the microstructure-property linkages in spatial multiscale simulations.
This paper generalizes this framework by allowing the introduction of different basis functions, and
explores their potential benefits in establishing the desired process-structure-property (PSP) linkages.
These new developments are demonstrated using a Cahn-Hilliard simulation as an example case study,
where structure evolution was predicted three orders of magnitude faster than an optimized numerical
integration algorithm. This study suggests that the MKS localization framework provides an alternate
method to learn the underlying embedded physics in a numerical model expressed through Green’s func-
tion based influence kernels rather than differential equations, and potentially offers significant compu-
tational advantages in problems where numerical integration schemes are challenging to optimize. With
this extension, we have now established a comprehensive framework for capturing PSP linkages for mul-
tiscale materials modeling and simulations in both space and time.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Customized materials design (including the design of a manu-
facturing process route) resulting in the combination of properties
desired for a specific application is a highly challenging inverse
problem, owing mainly to the extremely large parameter space
involved in defining the hierarchical internal structure of the mate-
rial. However, this endeavor has great potential for impacting vir-
tually all emerging technologies [1–11], with significant economic
consequences. The central impediment comes from the need to
consider the relevant details of the hierarchical internal structure
(spanning a multitude of length scales) that control the properties
of interest to a specific application. Additionally, a diverse range of
coupled physical phenomena occur at different timescales at each
of the different length scales. Therefore, one is generally daunted
by the enormous difficulty involved in tailoring the material struc-
ture to yield desired combinations of properties or performance
characteristics.

Historically, and mainly because of the difficulties mentioned
above, materials development efforts have relied largely on exper-
imentation. Consequently, many of the efforts aimed at designing
and developing new/improved materials have incurred significant
cost and time. Recent advances in physics-based modeling of
multiscale materials phenomena [12–21] have raised the exciting
possibility that the vast design space for experimentation can be
constrained to a significant degree by embracing in silico simula-
tions and explorations. In other words, there is a tremendous
potential for significant reductions in cost and time incurred in
materials development effort if one could judiciously utilize multi-
scale materials modeling and simulation tools in combination with
a reduced number of experiments.
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The central impediments associated with the effective utiliza-
tion of physics-based multiscale materials models in the materials
development include: path dependent microstructure evolutions
that depend on initial conditions, non-unique parameter selection
for coupling multiscale models, approximations in microstructure
representation, material property dependence on extreme values
of microstructure distributions, large optimization space, metas-
tablity of microstructure during use, and uncertainty in data, mod-
els and model parameters [18,22]. An important strategy in
addressing these impediments involves the formulation and uti-
lization of robust surrogate models (also called metamodels or
emulators) for computationally efficient communication of critical
information between well separated structure/length/time scales.
Such low-dimensional, but sufficiently accurate, models present a
computationally viable approach for exploring efficiently the
extremely large materials design space.

In the context of hierarchical materials (with details of the
material structure spanning multiple well-separated scales) surro-
gate models are needed to exchange high value information in
both directions between the scales. Depending on the direction
of information flow, the models can be classified as homogeniza-
tion (information flowing from lower scales to higher scales) or
localization (information flowing from higher scales to lower
scales) relationships. It should be noted that localization linkages
are significantly more difficult to establish compared to the
homogenization linkages; indeed the latter are implicitly embed-
ded within the former and can be recovered from them when
needed.
2. Review of homogenization and localization approaches

Theories for predicting the properties of composite materials go
as far back as 1873, with Maxwell predicting an effective conduc-
tivity for a region of a material with dilute inhomogeneities
through a mean-field approximation [23–25]. The simplest, and
most commonly used, homogenization methods for mechanical
properties were developed by Voigt and Reuss [26,27], and provide
‘‘elementary” bounds for the estimates of the effective properties.
These calculations typically involve simple volume-averaging of
the properties at the microscale. The bounds obtained in this
approach also correspond to the correct effective values for highly
specialized microstructures. For example, the upper bounds
obtained in these approaches typically correspond to microstruc-
tures where the microscale constituents have uniform shape, and
are continuous and perfectly aligned along the loading direction
(e.g., unidirectional, straight, and continuous fibers).

Hill and Hashin introduced the concept of a Representative Vol-
ume Element (RVE) [28,29] which can be defined as a statistically
homogeneous subvolume where the length scale associated with
the local perturbation in material properties is sufficiently small
compared to the length scale of the subvolume (typically referred
as ‘‘well-separated” length scales). With this definition, a mean-
field approximation can be used to assign an effective property
to a RVE. It can be shown that good estimates for a broad class of
effective properties associated with an RVE can be expressed in
the following generalized form [28]:

Peff ¼ hAðxÞPðxÞi ð1Þ

where Peff denotes the effective property, hi denotes ensemble aver-
age (also equal to volume average by virtue of the ergodic assump-
tion), and AðxÞ is a suitably defined tensor operator. The central
challenge of this theory lies in the computation of the tensor
operator.

While the theory described above emerged in the context of
mechanical properties, it has also been successfully applied to
material properties such as thermoelectric, piezoelectric, diffusion,
and conductivity for composite materials [30]. A large variety of
approaches have been built on this foundational framework, and
have been employed successfully in addressing practical problems
of interest in composite material systems. Hill developed the self-
consistent method which employs Eshelby’s solution to ellipsoidal
inclusions in an infinite medium to find an approximate estimate
of the effective properties [31,32]. An improved generalized self-
consistent method emerged from the work of Hashin, Shtrikman,
Christensen and Lo [29,33–36], which allows for more complex
geometric shapes of the reinforcement phase. A good overall treat-
ment of such approaches for homogenization theory or estimates
can be found in the textbook by Qu and Cherkaoui [37] as well
as the report by Bohm [24]. Further advanced theories of homoge-
nization were established by Willis [38], and subsequently by
Ponte-Castanada [39].

In a completely different approach, advanced composite
theories were developed to specifically take into account the rich
details of the material microstructure. These approaches utilized
the formalism of n-point spatial correlations to quantify the details
of the material microstructure together with the concept of Green’s
function to estimate the effective property of interest [40–46]. An
overview of this more sophisticated approach for composite theo-
ries can be found in the book by Milton [30]. One of the earliest
demonstration of this approach comes from Brown, who used a
series expansions of a localization tensor to predict the electrical
conductivity of a 2-phase material [47]. More rigorous applications
of this approach can be found in the work of Torquato and
co-workers [48,49].

The main limitation of the approach described above is that the
Green’s functions needed to implement the method are only
available for cases involving highly idealized and simplified phy-
sics (i.e., material constitutive laws). The recently formulated
Materials Knowledge Systems framework (MKS) addresses this
critical gap by advancing a data-driven approach [20,50–53].
3. Homogenization and localization with MKS

MKS homogenization and localization linkages are created by
merging concepts from the physics-based statistical continuum
theories developed by Kroner [54,55], machine learning [56–58]
and digital signal processing [59]. A generalized workflow for
establishing the homogenization linkage (e.g., structure-property
linkage) is shown in Fig. 1. Broadly, this workflow includes a cali-
bration step and a validation step. More specifically, this data-
driven approach captures the pertinent microstructure features
through n-point spatial correlations and employs dimensionality
reduction techniques to create low-dimensional microstructure
descriptors [60–62]. Linkages between effective properties and
these low dimensional descriptors are then created using regres-
sion techniques [63–65].

The MKS localization linkages are expressed as a series, where
each term involves convolutions of physics-capturing kernels
(based on Green’s functions) with hierarchical microstructure
descriptors. These kernels (referred to as influence functions) cap-
ture and organize the governing physics as convolution operators
that are independent of the spatial arrangements of the local states
in the material microstructure. Therefore, in the MKS localization
approach, these kernels are calibrated with results produced using
numerical tools (e.g., finite element models).

It is emphasized here that once the influence kernels in the MKS
linkages are calibrated and validated, they can be used to predict
the local responses for new microstructures at very minimal com-
putational expense. Therefore, this approach is of particular value
when one needs to explore a very large number of potential



Fig. 1. Generalized MKS homogenization workflow for structure-property linkages
[64].
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microstructures. It should be noted that the design of multiscale
material systems for optimized performance is expected to require
a consideration of a very large number of potential microstruc-
tures. As a simple illustration, let us assume that the specification
of an RVE at any selected material structure scale would require a
minimum of 8000 (i.e. 20 � 20 � 20) spatial cells or voxels. Further
assume that the specific material system being explored allows for
placement of only ten distinct potential local states (could be based
on differences in thermodynamic phases and/or chemical composi-
tion and/or defect densities and/or local orientation attributes such
as the crystal lattice orientation). Even with such highly conserva-
tive estimates, the number of different RVEs that one can imagine
producing in a comprehensive materials design exploration is
108000. While an exhaustive search of the structure space is imprac-
tical, the subspaces explored during optimization are also extre-
mely large. An efficient exploration of such large design spaces
demands innovative new approaches.

Prior effort in MKS localization was largely focused on steady
state structure-property localization linkages [20,50–52], with
the exception of one prior study exploring the time evolution of
Fig. 2. Generalized MKS Localization workflow for st
the microstructure field [66]. Previous studies have shown that if
the local states are discrete, influence coefficients can be calibrated
with a small number of simulations and then used to predict the
local response of microstructures with any new spatial configura-
tion of the local states [50,51]. Similar to Green’s functions, the
MKS localization kernels depend on the boundary conditions and
physical constants that govern the constitutive behavior of the
local states present in the material system. It has been shown that
the influence kernels can be suitably parametrized to include such
dependencies (i.e., interpolation between sets of kernels can pro-
vide remarkably accurate predictions for new conditions [53]). A
generalized MKS localization workflow, including both calibration
and validation steps, can be found in Fig. 2. It is noted here that the
workflows presented in Figs. 1 and 2 are highly generalized, and
can be applied broadly to a range of material systems experiencing
a range of multiscale materials phenomenon.

A schematic illustration of a multiscale simulation using the
MKS framework is shown in Fig. 3. This chain of models passes
homogenization information from the lower length scales to
higher lengths. The thermodynamic model computes thermody-
namic quantities that define the phase field model parameters. In
turn the phase field model predicts the microstructure as a result
of processing conditions. The effective modulus of the microstruc-
ture is found using the mechanical model (e.g. finite element
method), which is used in the design model for a component. In
the model chain, localization information is also passed from the
higher length scales to the lower length scales. Using a microstruc-
ture and the applied stress and/or temperature provided by the
design model, the mechanical model computes local stress and
strain fields. These local fields provide information about the free
energy density to the phase field model for microstructure evolu-
tion which in turn refines the thermodynamic calculations from
the thermodynamic model. The current approaches for multiscale
simulations based on numerical approaches such as finite element
method or the phase-field method are not ideally suited for such
bi-directional explorations due to their high computation costs.
In the MKS framework, computationally cheap and sufficiently
accurate surrogate models will serve as surrogates, and can greatly
expedite this process.

Although most of the previous work in the MKS framework has
focused on the mesoscale [20,50–52,63–65], the approach can
indeed be extended to other length and time scales involved in
ructure-property linkage at the meso-scale [53].



Fig. 3. One instance of a multiscale simulation covering multiple length and time scales. The homogenization information is passed to models at higher length scales, while
the localization information is passed to models at lower length scales. Sufficiently accurate and computationally cheap surrogate models created using the MKS framework
serve as replacements for the models which use the microstructure (i.e., mechanical and phase field models) to speed up exploration for a new material.
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multiscale materials phenomenon as long as the phenomena
involved are well separated and the heterogeneity at each scale
is statistically homogeneous or weakly stationary [67]. Although
some preliminary work with MD simulations has been reported
[68,69], much additional work is still needed to further refine
and demonstrate the details of such implementations.

The current effort is aimed at the extension and application of
the MKS approach to include transient process-structure evolution
localization linkages. In general, the process-structure evolution
linkages are significantly harder to establish compared to the
structure-property linkages, because of the need to explicitly
account for the time evolution of the important field quantities
(in addition to their spatial distributions), many of which demand
continuous descriptions. Consequently, there currently exist only a
few reports in literature describing efforts aimed at capturing the
salient process-structure evolution metamodels for multiscale
materials phenomena. One area that has received a lot of attention
in prior literature is the evolution of crystallographic texture in
deformation processing of polycrystalline metals [70–82]. How-
ever, in this set of applications, all the attention is generally
focused on capturing the salient details of the time evolution,
while ignoring or grossly simplifying the spatial distribution of
the important field variables involved. More recently, there have
been a limited number of efforts aimed at mining low-
dimensional process-structure evolution linkages from results
accumulated in phase-field simulations [21,83–85]. In these prior
applications, gross simplifications were made by limiting the set
of initial microstructures, the microstructure descriptors or the
local states allowed in the microstructure.

In this paper, we extend the MKS localization framework to
allow efficient capture of the process-structure evolution localiza-
tion linkages. Indeed, this extension when suitably combined with
the existing MKS framework has the potential to facilitate a com-
mon, consistent, broadly applicable, framework for casting all of
the relevant process-structure-property (PSP) linkages in a
selected class of materials. A second major thrust of this paper is
the derivation of the MKS framework using spectral representa-
tions for some of the main functions (kernels) involved in these
linkages. The novel protocols described above are demonstrated
in this paper through a specific case study involving the extraction
of process-structure evolution linkages embedded in the simula-
tion results produced by a selected phase-field model.
4. Generalized MKS framework for process-structure linkages

The development of the generalized MKS framework for
process-structure linkages will be presented here using the
Cahn-Hilliard model as an example. However, the generalized final
expression formulated here is broadly applicable to various other
microstructure evolution models. The Cahn-Hilliard description
of microstructure evolution can be expressed as [86]

@/ðx; tÞ
@t

¼ Dr2 /ðx; tÞ � /ðx; tÞ3 þ cr2/ðx; tÞ
� �

ð2Þ

In Eq. (2), /ðx; tÞ is an order parameter used to represent the con-
centration field at location x and time t;

ffiffifficp
represents the interface

width, and D is the diffusivity. Note also that a double well potential
with minima at �1 and 1 has been used in Eq. (2) for the free energy
term [87,88].

The theoretical framework of MKS is built on perturbation
expansions. For the present case, we therefore start by expressing
the concentration field /ðx; tÞ in terms of a reference quantity �/

(constant in both space and time) and a local perturbation /0ðx; tÞ
from that reference as

/ðx; tÞ ¼ �/þ /0ðx; tÞ ð3Þ
Introducing Eq. (3) into Eq. (2) results in the following differential
equation.

@/0
@t � Dr2/0 ¼ Dr2 cr2/0 � 3/0�/2 þ 3/02�/þ /03

h i� �
¼ Dr2 cr2/0 þ wðx; tÞ

� � ð4Þ

where

wðx; tÞ ¼ �3/0�/2 � 3/02�/� /03 ð5Þ
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We can use a Green’s function approach to find the solution to
Eq. (4) where

@Gðx� x0; t � t0Þ
@t

� Dr2
xGðx� x0; t � t0Þ ¼ dðx� x0; t � t0Þ ð6Þ

and with a suitable change of variables we have

/0ðx;tÞ¼�
Z
V
Gðr;tÞ/0ðx� r;0Þdrþ

Z
T

�
Z
V
Gðr;sÞDr2

r cr2
r/

0ðx� r;t�sÞþwðx� r;t�sÞ
� �

drds

ð7Þ
In Eq. (7), /0ðx;0Þ is the initial value of the perturbed concentration.
Assuming periodic boundary conditions, the operators rr can be
moved from concentration terms to the Green’s functions.

/0ðx; tÞ ¼ �
Z
V
Gðr; tÞ/0ðx� r;0Þdr þ

Z
T

Z
V
Dcr4

r Gðr; sÞ/0ðx

� r; t � sÞ þ Dr2
r Gðr; sÞwðx� r; t � sÞdrds ð8Þ

Recursive substitution of /0ðx; tÞ into Eq. (8) produces a series
(called the weak contrast expansion) that can be used to compute
the perturbed concentration field [49,54,55,67].

/0ðx; tÞ ¼ �
Z
V

1�
Z
T

Z
V

eGðr; r0; t; sÞdr0ds� �
Gðr; tÞ/0ðx� r;0Þdr þ . . .

ð9Þ
with

eGðr; r0; t; sÞ ¼ Dr2
r r2

r Gðr0; sÞc� 3�/2Gðr0; sÞ
h i

ð10Þ

The higher order terms in Eq. (9) (i.e., the terms denoted by . . .) will
be discussed later (see the description near Eq. (15)).

Simplified analytical solutions for Eqs. (9) and (10) are very
difficult and demand highly sophisticated approaches to handle
the convergence of the terms in the series [43,89]. There have also
been numerous approaches utilizing numerical iterative schemes
to solve the same equations [90–95]. The numerical approaches
generally demand significant computational resources because of
the highly nonlinear expressions embedded in Eqs. (9) and (10).
More importantly, most conventional numerical approaches do
not facilitate learning. In other words, when the equations are
solved for one specific set of inputs there is no established formal-
ism for transferring the knowledge gained in the process to the
next application of the same set of equations for a different set of
inputs. This is precisely where data science approaches, such as
the MKS approach, bring many potential benefits. In the data
science approach, we recognize that each term in the series is
essentially a convolution, where the kernel is completely indepen-
dent of the topological details of the material microstructure. Sui-
table algorithms are then designed and employed to efficiently
learn these kernels from previously accumulated results. In many
ways, the calibrated MKS localization linkages take full advantage
of the known physics of the phenomena, and supplement only the
mathematically intractable components with data science
approaches, where they exhibit a clear advantage.

The MKS kernels facilitate learning and transfer of knowledge to
a new set of microstructure inputs. In order to accomplish this, Eqs.
(9) and (10) need to be reformulated using the concepts of
microstructure function and local states [96,97]. The local state
captures all the attributes (thermodynamic state variables) needed
to identify the physical properties to be assigned to the spatiotem-
poral location of interest in the material internal structure. In the
problem described here, either the concentration value or the
perturbed concentration value (after selecting a reference concen-
tration value) can serve as local state variables. The local state will
be denoted as h. The set of all values that h can take is denoted as
the local state space, H. The main distinction between h and /0 (or
/) is that the later is a specific value assigned to a specific spa-
tiotemporal location, while the former denotes any value that
could have been assigned to the later.

The introduction of the concept of the local state now allows us
to describe a microstructure function mðh; x; tÞ as the probability
density associated with finding the local state h at spatial position
x at time t. The expectation value obtained using this probability
density distribution (on the local state space) should be taken as
the specific value assigned in the fully deterministic framework
described earlier. In other words, for the fully deterministic case,
one could write mðh; x; tÞ ¼ dðh� /0ðx; tÞÞ. For the more general
case, the definitions introduced above lead to the following math-
ematical statementsZ
H
mðh; x; tÞdh ¼ 1 ð11Þ

/0ðx; tÞ ¼
Z
H
hmðh; x; tÞdh ð12Þ

The introduction of the microstructure function as a probability
density function brings the added benefit that it maps complex
descriptions of local state (potentially could be a combination of
several scalar and tensor thermodynamic state variables) into a
continuous scalar-valued function that lends itself naturally to
spectral representations [98–101]. Extending the treatment above
to the term containing the Green’s function in Eq. (9) allows us to
define an influence function or localization kernel as

aðh; r; tÞ ¼ �h 1�
Z
T

Z
V

eGðr; r0; t; sÞdr0ds� �
Gðr; tÞ ð13Þ

Recasting Eq. (9) with the terms defined in Eqs. (12) and (13)
takes the following form.

/0ðx; tÞ ¼
Z
V

Z
H
aðh; r; tÞmðh; x� r;0Þdhdr þ . . . ð14Þ

The derivation of Eq. (14) is a key step in the formulation of the MKS
approach for the process-structure evolution localization linkages
sought in this work. The main benefit of the form of Eq. (14) lies
in the fact that aðh; r; tÞ serves as a convolution kernel capturing
all of the relevant physics in the problem, and operates on the initial
microstructure function mðh; x;0Þ. Even more importantly, when
the series is expanded properly, the localization kernel is com-
pletely independent of the microstructure function mðh; x;0Þ. Fur-
thermore, Eq. (14) is the exact analog of the structure-property
localization linkages established previously in the MKS framework
[20,50–53]. Therefore, the extension presented here now makes it
possible to explore the complete set of process-structure-property
linkages in a consistent MKS framework in both space and time.

Because of the specific way in which Eq. (14) was derived, it is
relatively easy to write the additional terms in the series expan-
sion. For example, the second term in this expansion would be
expressed asZ
H

Z
H

Z
V

Z
V

Z
T
aðh;h0

;r;r0;t;t0Þmðh;x� r;0Þmðh0
;x� r0;0Þdhdh0drdr0dt0

ð15Þ
Therefore, another way to interpret the series expansion in Eq. (14)
is to recognize that each term in the series captures the contribution
arising from a specific arrangement of the local microstructure in
the neighborhood of the spatial voxel of interest as a function of
time.

The next step in the practical implementation of the MKS
framework is to transform Eq. (14) into a discrete representation.
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In other words, the functions /0ðx; tÞ, aðh; x; tÞ and mðh; x; tÞ need to
be discretized. Following notations and conventions employed in
signal processing [102,103], we will use round brackets to repre-
sent variables with continuous domains and square brackets to
represent variables with discrete domains.

The discrete version of /0ðx; tÞ is denoted as p½s;n�; these are for-
mally related to each other as

1
DxDt

Z
s

Z
n
/0ðx; tÞdxdt ¼ p½s;n� ð16Þ

In Eq. (16), s and n enumerate uniformly partitioned intervals that
fully span the continuous domains of space V and time T, respec-
tively, and Dx and Dt denote appropriate measures of the intervals.
Therefore, the discrete version of /0ðx; tÞ essentially captures the
averaged values within the uniformly subdivided intervals in space
within the time step n.

Two different discretization methods for the local state space
variable h can be used. Both methods result in the same discretized
equation. The details for both methods can be found in Appendix A,
and the discretized version of Eq. (14) has the following form.

p½s;n� ¼
XS�1

r¼0

XL�1

l¼0

a½l; r;n�m½l; s� r;0� þ . . . ð17Þ

In the remainder of this paper, we first demonstrate the viabil-
ity of the extended MKS framework presented above for capturing
process-structure evolution linkages. Furthermore, in conducting
this case study, we will explore two approaches for the discretiza-
tion of the functions on the local state space for multiscaling in
time by extending the length of time step n to match the time
domain of the simulation T through a specific case study.

5. Cahn-Hilliard simulations and MKS linkage calibrations

5.1. Simulation and MKS linkage details

The simulation data aswell as theMKS localization linkages used
in this case study were generated using the Python library PyMKS
[104]. A Cahn-Hilliard simulation is used to generated data for the
calibration of theMKS linkages and serves as a reference to compare
and validate their performance. The Cahn-Hilliard equation pre-
sented earlier in Eq. (2) was solved using the optimized semi-
implicit spectral scheme with periodic boundary conditions
described by Cheng and Rutenberg [105]. The parameter c was set
equal to 0.2, and the time step for the calibration dataset was set
equal to 10�2 s. Two spatial domains with sizes of 100 � 100 and
300 � 300 were used to examine how the different methods scale
Fig. 4. One instance of an initial microstructure (100 � 100) and its corresponding mic
coefficients for MKS localization linkages using both the Legendre and the Primitive bas
for larger simulations. The simulations and the MKS linkages were
computed on a machine with eight 1.0 GHz processors and 8 GB of
memory.

In the present study, we focus on capturing process-
microstructure localization linkage in one large time step using
the MKS framework. Note that this differs from the approach used
in the earlier study [66] where the time derivative of the concentra-
tion was used as the output response field (the LHS of Eq. (17)) and
it was shown that once this linkage is established for one time step,
it can be recursively applied to march forward in time. In the pre-
sent study, we have used the concentration at the end of 500 time
steps (or one large time step) as the output response field.

In this study, we explore two discretization approaches
described Appendix A for the functions on the local state space.
The approaches result in two different MKS localization linkages
that look alike in their mathematical forms. The linkage referred
to as Legendre MKS linkage throughout the remainder of the paper
uses the discretization method outlined in Eqs. (A.9) and (A.10)
with Legendre polynomials as the basis functions. The other link-
age uses the discretization method outlined in Eqs. (A.4) and
(A.5) and is referred to as the Primitive MKS linkage throughout
the remainder of this paper. Both models restrict the local state
space domain to h 2 ½�1;1�.

5.2. First order influence coefficients and discrete fourier transforms

Only the first term in Eq. (17) is used in this work. In prior work
[20,50–53], it was shown that the first term is dominant for
problems with low to moderate contrast, which in turn controls
the degree of heterogeneity of the response field. In the present
problem, this criterion is met within the 500 time steps of the
simulation. This results in significant computational advantages
as the calibration of the first-order MKS localization kernels can
be done efficiently by taking advantage of discrete Fourier trans-
forms and the convolution theorem [106,107]. This transformation
leads to

P½k;n� ¼
X
l

b½l; k;n�M½l; k;0� ð18Þ

In Eq. (18) P½k;n�, b½l; k; n� andM½l; k;0� are the discrete Fourier trans-
forms of p½s;n�, a½l; s;n� and m½l; s;n� for Eq. (17) respectively.

With the uncoupled spatial frequency representation shown in
Eq. (18), the b terms can be calibrated easily using multiple linear
regression techniques using the known values for P andM. The dis-
cretization used for the Primitive MKS linkage (Eqs. (A.4) and (A.5))
is subject to the constraint that the discretized microstructure
function sums to one at any instance in space and time,
rostructure after 500 small time steps, which were used to calibrate the influence
is functions.



Fig. 5. Root mean squared error (points) and standard deviation (line widths)
values of the predicted concentration fields found using 10-fold cross-validation of
MKS localization evolution-linkages using the Legendre and Primitive basis
functions to represent the microstructure function and influence function.
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X
l

m½l; s;n� ¼ 1 ð19Þ

therefore multiple linear regression with categorical variables as
outlined in previous studies is used [20,50–52]. The discretized
microstructure function in the Legendre MKS linkage is not subject
to the constraint shown in Eq. (19) and therefore standard multiple
linear regression is used.

5.3. Calibration data

The first step in the calibration of MKS localization kernels is the
generation of a calibration dataset. For this purpose, Eq. (2) was
Fig. 7. Significant influence coefficients for the Legendre basis with L e

Fig. 6. Significant influence coefficients for the Primitive basis with L
numerically solved for 500 time steps for 500 randomly generated
initial concentration fields with values sampled from a normal dis-
tributions. The mean values of the normal distribution were ran-
domly selected between [�0.5,0.5] and standard deviations of
10�2. The concentration fields at the beginning and the end of
the 500 small time steps constitute the input and output, respec-
tively for the calibration of the MKS localization linkages. An exam-
ple of these fields is shown in Fig. 4.

5.4. Selection of local states and calibration of influence coefficients

One of the main MKS parameters for either of the discretization
methods is the selection of the of total number of local states (or
number of basis functions) L used to describe the local state space.
In the previous study it was shown that an increase the in variable
L can potentially lead to increased accuracy for small time steps at
the cost of making the MKS linkage computationally more expen-
sive [66]. Therefore, the minimum value of L that provides a suffi-
cient level of accuracy is desired.

In order to explore the selection of L for both discretization
methods with one large step, the calibration ensemble of data
was randomly split into two sets. One set which will be referred
to as the linkage selection dataset contains 320 (or 80%) of the
microstructures and remaining 80 (or 20%) of the microstruc-
tures will be referred to as the linkage validation dataset. In
the present work, the two MKS localization linkages were cali-
brated using the linkage selection dataset while varying L
between 2 and 15. In order to avoid over fitting the linkage
for a given value of L, 10-fold cross-validation was used. This
method randomly partitions the linkage selection dataset into
ten equally sized sub-datasets and calibrates the linkage ten
times while systematically leaving out each of the sub-datasets
once. This method results in 10 calibrations for each value of L
amounting to a total of 280 calibrations between the two MKS
localization linkages.
qual to 6. All other fields had maximum values of less than 10�2.

equal to 6. All other influence coefficients were less than 10�5.



Fig. 8. Initial microstructure (100 � 100) used as a common input for the Cahn-
Hilliard simulations as well as the MKS localization linkages with Primitive and
Legendre basis functions.

Fig. 10. Initial large microstructure (300 � 300) used as a common input for the
Cahn-Hilliard simulations and the MKS localization linkages.
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN�1

i¼0
ð/½i�simulation � /½i�predictionÞ2

r
ð20Þ

In order to evaluate the accuracy of the linkages while varying L,
the rootmean squared error (RMSE) valuewas computed over every
voxel in the sub-datasets used for each of the calibrations with ref-
erence to the Cahn-Hilliard simulation (as shown in Eq. (20)) and
was averaged over the ten cross-validation scores. The averaged
RMSE values and their standard deviations are shown in Fig. 5.

The two MKS linkages exhibit a downward overall trend with
increasing L. Large and small oscillations were seen in the case
of Primitive and Legendre MKS linkages respectively. In the
Legendre MKS, it was also observed that the coefficients of the
even polynomials in the series were all orders of magnitude
smaller than the coefficients of odd polynomials. These observa-
tions suggest that the influence functions for the Cahn-Hilliard in
Eq. (13) are odd functions. For L greater than 3, the Legendre
MKS linkage consistently produced a lower RMSE values com-
pared to the corresponding Primitive MKS linkage. It should also
be noted that with the Primitive basis, the dominant kernels are
the ones associated with the important regions in the local state
space. With the Legendre basis, we get a more organized
descriptions of the kernels with the higher-order terms
representing the less important contributions, in general, as
one would expect for smooth decaying functions such as the
Fig. 9. Predicted concentration fields by simulations using 500 small time steps (left) as w
one large time step.
influence functions. Fig. 5 shows that L ¼ 6 provides sufficiently
accurate low-cost linkages that can be used to predict
processing-structure evolution for the present case study.

The Primitive and Legendre MKS linkages were both calibrated
using the entire calibration dataset with the value of L set equal to
6. These two linkages are used for the remainder of the case study.
The discretized influence functions (referred to as influence coeffi-
cients) for both linkages can be found in Figs. 6 and 7.
6. Microstructure evolution linkages for Cahn-Hilliard
simulation

Both MKS linkages calibrated in this study were used to predict
the microstructure evolution of the same set of 250 initial concen-
tration fields. The initial microstructures, one instance shown in
Fig. 8, generated from normal distributions with mean values ran-
domly selected between [�0.1,0.1] and standard deviations of 10�2

were used as inputs into the Cahn-Hilliard simulation and the two
MKS linkages. The simulation numerically predicted each of the
microstructures after 500 small time steps with an average run
time of 1.33 s. The MKS linkages used the same initial inputs and
the predicted microstructures equivalent to running the simula-
tion for 500 small time steps, but with one large step. The average
run time of the Primitive and Legendre MKS linkages were
ell as the concentration fields predicted by the two MKS localization linkages using



Fig. 11. The concentration fields predicted by the numerical simulation with a 500 small time steps (left) as well as the concentration fields predicted by the MKS localization
linkages with one large time step using scaled up influence coefficients from a domain size of 100 by 100 to 300 by 300 with Primitive and Legendre bases.
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3:82� 10�3 s and 4:94� 10�3 s with RMSE values of 5:68� 10�2

and 3:36� 10�2 respectively. An instance of the final predicted
microstructures for the MKS linkages and the simulation are com-
pared in Fig. 9.

One of the major advantages of using the MKS localization link-
age is that the learning in the form of the MKS influence coeffi-
cients (discretized kernels) can be transferred to other initial
microstructures that may be defined on larger spatial domains.
In other words, the same influence coefficients that are calibrated
on a small dataset can be used to predict the structure evolution
for a much larger microstructures. This allows for the influence
coefficients to be calibrated once and used to represent the
processing-microstructure evolution for simulations with equal
or larger domains sizes. Because of the decaying nature of the dis-
cretized influence functions in real space as shown in Figs. 6 and 7,
the edges can be zero padded to expand their domain size to match
the domain of new initial microstructure. The influence coefficients
for both of the Primitive and the Legendre MKS linkages were
scaled up from a domain of size 100 by 100 to 300 by 300 using
the method outlined by Landi et al. [51].

A set of 250 initial microstructures were created using the same
method as described above, but on a larger spatial domain of
300 � 300, is shown in Fig. 10. These microstructures were used
as inputs to the same the Cahn-Hilliard simulations and the MKS
localization linkages and the final microstructures were predicted.
The average run time for the simulation using 500 time steps was
1:13� 102 s. Primitive and Legendre MKS linkages had run times of
3:54� 10�2 s and 7:00� 10�2 s, with RMSE values 7:10� 10�2 and
4:00� 10�2 respectively. The predicted concentration fields are
compared in Fig. 11.

As one should expect, the accuracy of the MKS linkages gener-
ally improves when a larger number of terms in the series are
retained (see Fig. 5). In practice, the level of desired accuracy
would be controlled by the application. However, it is important
to note that the MKS approach allows the user to establish the
desired accuracy level and make the necessary trade-offs between
the accuracy and the effort involved.
7. Conclusion

A new generalized MKS localization framework with two differ-
ent discretization methods for the local state variables has been
developed for formulating computationally low-cost process-
structure linkages which allow for temporal multiscaling. This
framework is quite general and allows compact representation of
the influence functions (or kernels) on the local state spaces. The
overall framework was presented and demonstrated using a
Cahn-Hilliard microstructure evolution as a prime example.
Although the computational cost of the Primitive MKS linkage
was slightly lower than the Legendre MKS linkage, and the Legen-
dre MKS linkage was more accurate and showed more smooth
decay of error with increasing number of terms in the series. Both
MKS localization linkages predicted the process-structure evolu-
tion for the concentration fields three orders of magnitude faster
than the simulation with a small time step.

This case study suggests that MKS localization framework
provides an alternate method to learn the underlying embedded
physics in a numerical model. This form of expression of the under-
lying physics as Green’s function based influence kernels (as
opposed to expression in the form of differential equations) may
provide certain computational advantages in rapid exploration of
large spaces in process design to attain desired or specified
microstructures. This is especially the case for problems where tra-
ditional numerical integration schemes have been difficult to
optimize.

Overall, it was demonstrated that the MKS kernels extracted for
the example studied were indeed insensitive to the details of the
initial microstructure (in other words the same kernel can be
applied to any initial microstructure in the selected material sys-
tem) and could be trivially expanded for applications to larger
domain sizes with comparable accuracy. The method described
here has laid a strong foundation for future developments address-
ing a broad range of materials systems with richer microstructures
and more complex governing physics.
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Appendix A. Discretization methods for local state space

Functions aðh; x; tÞ and mðh; x; tÞ exhibit a dependence on the
local state variable, in addition to the spatial and temporal vari-
ables. The spatial and temporal variables are discretized using
the same method outlined in Eq. (16), but there are two potential
strategies to deal with the discretization of these functions with
respect to the local state variable. The simplest approach is to dis-
cretize the local state space H using triangle or hat basis functions
Kðh� lÞ to divide the local state space into intervals. The hat basis
functions are defined in Eq. (A.1).

Kðh� lÞ ¼ max 1� hðL� 1Þ
H

� Hl
L� 1

����
����;0

� 	
ðA:1Þ

In Eq. (A.1), h and Hmaintain their definitions as the local state vari-
able and a measure of the local state space, respectively, L is the
total number of hat basis functions used to span the local state



Fig. A.12. Three hat basis functions K used to discretize the local state space H. This
method is referred to as Primitive basis functions.
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space and l enumerates the hat functions. The hat functions are
placed along the local state space such that the maximum and min-
imum values of the local state space domain fall on the peak values
of the hat functions associated with the largest and smallest values
of l. An example of these hat functions with L ¼ 3 and h 2 ½0;1� is
found in Fig. A.12. Using this method to position the hat functions
in the local state space ensures the sum of all hat functions con-
tained within the local state space sum to 1, and that a summation
of the hat functions times the microstructure function returns the
original microstructure function.

XL�1

l¼0

Kðh� lÞ ¼ 1; h 2 H ðA:2Þ

XL�1

l¼0

Kðh� lÞmðh; x; tÞ ¼ mðh; x; tÞ ðA:3Þ

In previous work [66], this approach has been referred to as
primitive binning using the Primitive basis functions [20,50–53]
leading to

1
DxDt

Z
H

Z
s

Z
n
Kðh� lÞmðh; x; tÞdxdtdh ¼ m½l; s;n� ðA:4Þ

1
DxDt

Z
H

Z
s

Z
n
Kðh� lÞaðh; x; tÞdxdtdh ¼ a½l; s;n� ðA:5Þ

where l now enumerates the number of basis functions used to rep-
resent the local state variable h. This primitive binning approach
results in the MKS formulation that is consistent with most of the
prior studies [20,50–53], where it is expressed as

p½s;n� ¼
XS�1

r¼0

XL�1

l¼0

a½l; r;n�m½l; s� r;0� þ . . . ðA:6Þ

Alternatively, the functions on the local state space can be rep-
resented to adequate accuracy using highly efficient orthogonal
basis functions. For example, it is well known that orthogonal func-
tions developed through classical Sturm-Liouville theory can be
used as basis functions in many applications. Using such basis
orthogonal functions, one can establish representations such as
the ones shown below for an arbitrary function [108–111]:

f ðhÞ ¼
X1
l¼�1

clnlðhÞ ðA:7Þ

1
Nl

Z b

a
nl0 ðhÞnlðhÞwðhÞdh ¼ dll0 ðA:8Þ
In Eq. (A.8) nl is the lth order orthogonal basis function, wðhÞ is the
weighting function, dll0 is the Kronecker delta and Nl is a normaliza-
tion constant that depends on the order and type of the basis func-
tions. The most important feature of Eq. (A.7) is that the set of
coefficients cl now provide a discrete representation of the function
f ðhÞ. This approach is particularly attractive when only a small
number of cl dominate the representation, but requires that the
local state domain H is mapped into the interval over which the
basis function is orthogonal and orthogonality relationship has a
weighting function equal to one, i.e., wðhÞ ¼ 1. Two potential
orthogonal bases that meet these criteria are Legendre polynomials
and Fourier series [112–114].

Applying this discretization approach to capture the h depen-
dence in functions mðh; x; tÞ and aðh; x; tÞ in Eq. (14), by selecting
orthogonal basis functions with wðhÞ ¼ 1 and mapping the local
state space to the orthogonal domain leads to the following dis-
cretized versions:

1
DxDt

Z
s

Z
n
mðh; x; tÞdxdt ¼

XL�1

l¼0

m½l; s;n�nlðhÞ ðA:9Þ

1
DxDt

Z
s

Z
n
aðh; x; tÞdxdt ¼

XL�1

l¼0

a½l; s;n�nlðhÞ ðA:10Þ

The introduction of these discretized representations into Eq. (14)
produces the exact same MKS formulation as shown previously in
Eq. (17), but with a new interpretation of the index l.
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