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ABSTRACT: Biologically Inspired Design (biomimicry) and
Industrial Ecology both look to natural systems to enhance the
sustainability and performance of engineered products,
systems and industries. Bioinspired design (BID) traditionally
has focused on a unit operation and single product level. In
contrast, this paper describes how principles of network
organization derived from analysis of ecosystem properties can
be applied to industrial system networks. Specifically, this
paper examines the applicability of particular food web matrix
properties as design rules for economically and biologically
sustainable industrial networks, using an optimization model
developed for a carpet recycling network. Carpet recycling
network designs based on traditional cost and emissions based
optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis
suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective;
correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with
flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same
as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations.
The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically
sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.

■ INTRODUCTION
“Movement gives shape to all forms. Structure gives order to
movement” - Leonardo da Vinci (paraphrased1).
Design inspiration for products has long been derived from

nature.2−4 Successful examples of such product level inspiration
include Velcro, self-cleaning surfaces, and high-rise heating and
cooling systems. Design inspiration for networks derived from
natural systems has been receiving increasing attention.5−13

The fields of Biologically Inspired Design (BID) and Industrial
Ecology (IE) both look to natural systems to facilitate closed
loop production in industrial systems.14 Industrial Ecology
traditionally uses natural systems as high level models.15−18 The
practice of BID in contrast uses deep analogies between human
and natural systems to identify biological principles that are
useful for solving human design and engineering problems.2−4

Together these network level analogies focus primarily on
parallels between industrial complexes and ecological systems.
The analogy between ecological food webs and human

networks is one between two networks that both exchange
materials and/or energy. Material and energy transfers between
industries and/or companies create interactions and structures
analogous to predator−prey species interactions in an
ecological food web. Analogies between ecosystems and food
webs and industrial networks, or other human systems that
exchange materials and energy, is supported by previous works,
for example, ref 10. The water networks (modeled in meters3

per year of water) for three Italian cities were modified using
food web analysis techniques to reduce wasted water within the
city limits.9,11,19 Carbon emissions (in kilograms per capita per
year) were studied using metrics normally associated with
ecological systems for flow networks representing the city of
Beijing, China20 and Vienna, Austria.21 The city of Beijing has
also been used as an economic network (following the flow of
billions of yuan per year)22 and an emissions network for
transfers via economic activities (following atmospheric fine
particulate matter PM2.5)

23 and analyzed using ecological
methods. Thermodynamic power cycle networks, described in
terms of kilojoules per kilogram of energy flows, have been
described using an ecological metric to measure cycling within
the system.24 Applying the tools ecologists used, here an
Ecological Network Analysis (ENA), can inform a sustainable
organization of material and energy flows among industries that
was not previously in the network design space.6,7,19,25

Expanding the number of design solutions for sustainable
networks is especially important in today’s world, where
resources that have historically been readily available are
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becoming scares, and climate changes are requiring a rapid
reduction in emissions.
Ecological Network Analyses (ENA) comprises a set of

methods for studying ecological food webs, and as noted, has
already provided insights into the structure and behavior of
industrial networks.7,12,19−22,24−29 A major theme of these
works is to use ENA to provide a systems level perspective of
complex collections of human industry and infrastructure, and
to examine indirect relationships between system components
that can be revealed by network analysis. Some of these studies
have suggested that industrial networks that display ecological
metric values closer to food web medians also result in
networks with lower costs and emissions25,29 or higher thermal
efficiency in the case of thermodynamic networks.24 This
argues for the importance of developing methods to evaluate
and implement design rules based on ecological analyses, which
presently are lacking.
Previous efforts using ecosystem-inspiration in network

studies have employed natural attributes to describe a human
system, or used ENA to present a modification of an existing
system with the goal of reducing waste or raw material input.
Environmental improvements made via the use of these
ecological analysis techniques have not yet been connected to
traditional economic improvements, a crucial factor in all
decisions relating to capitalism-based systems. Previous works
also have not examined how ENA can be used to develop
methods for the appropriate design of human industrial
networks, evaluated how ENA may perform when compared
to traditional optimization approaches, or demonstrated general
features of well-performing industrial networks. This inves-
tigation focuses on these topics.
This paper examines the importance of specific food web

matrix properties and metrics as quantitative guides toward the
design of economically and environmentally sustainable
industrial networks using a well characterized carpet recycling
network as a case study. The focus of this paper is to investigate
whether selected ecological metrics can (solely) be used to
identify network designs that are both environmentally and

economically superior. An optimization approach for designing
industrial networks is developed here using select ENA metrics.
As will be shown, this approach performs and correlates well
with respect to resource use efficiency and waste minimization
when compared to classical network optimization using
traditional measures of coast and emissions reductions. Using
an optimization model developed for a carpet recycling
network in Atlanta, GA25 as a typical representative close-
loop industrial system, structural and flow metrics from ENA
are used in different combinations to define the structure of the
network and create the flows between components in the
carpet recycling network model in order to meet its sustainable
design goals: minimize material inputs and waste outputs.
The performance of the biologically inspired carpet network

is compared to the network performance under a traditional
cost optimization. This side by side comparison of the
bioinspired and traditional designs quantitatively evaluates
what have, in the past, been largely qualitative and metaphor-
based applications of ecological ideas. Furthermore, the utility
of individual ENA metrics or different subsets of metrics in
arriving at sustainable system designs has not been examined.
Initial analysis by Reap showed a strong positive correlation
between objective function values for networks designed using
a group of food web metrics and those designed following a
standard cost and emissions minimization.25 Although
documenting the correlation, the initial study does not identify
which ecosystem metrics were the most significant factors for
this correlation, only investigated aspects of structure (i.e., the
flow magnitudes were not varied), and used inaccurate values of
the ecological metrics. This paper addresses these shortcomings
and performs quantitative analyses to better understand which
ecological metrics and properties are responsible for the
correlation. The results indicate that ecological metrics can be
used as design rules to improve the performance of industrial
networks, and identify particularly useful metrics and sets of
metrics that can accomplish this goal.

Figure 1. Carpet recycling network model showing existing and potential carpet tile and carpet tile material flows. The bolded vectors represent the
linkages in the design vector.
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■ MATERIALS AND METHODS

Carpet Recycling Network Model. The carpet network
model used for the analysis here was originally developed by
Reap25,29 and based on flows of carpet tiles from steady state
production to end-of-life. The data and assumptions behind the
model came from a compilation of prior works by Intlekofer,
Guidry, and Reap25,30,31 based on real-world industrial data
from carpet makers in the greater Atlanta Metropolitan Region.
Industrial networks generally have both structural and func-
tional features that make them analogous to ecosystems. Just
like their natural counterparts, they draw energy and materials
from the environment, and cycle material and energy through
series of transactions among their components, with some
fraction ultimately leaving the system boundaries. The
advantage of using the carpet network specifically is that
detailed quantitative real world data was available for a
traditional optimization and performance evaluation of different
instantiations of this system, which allowed explicit quantitative
comparisons of traditional vs ecological optimization ap-
proaches.
The network contains one carpet manufacturing facility, 9

landfills, 15 reuse or recycling facilities, and 13 counties that
consume and/or store carpet (Figure 1). This yields 38 actors
with 85 possible flows of carpet materials PVC and Nylon-6,6
between them. All carpet materials are measured uniformly in
kilograms (kg) of materials per year. Each of the 13 counties
has two design variables, one for the amount of carpet sent to
reuse and one for the amount of carpet sent to recycling. These
make up the 26 design variables, hereon referred to as the
“design vector” representing potential recycling and reuse flows.
Detailed information for the carpet model used here can be
found in the online Supporting Information.
Initial analyses by Reap varied the design vector containing

the amounts of carpet sent to recycling and reuse centers
(linkages x16−x41 bolded in Figure 1). The design vector was
modified such that the amount of recycled or reused of
materials varied from a value of zero to a maximum established
by capacity limits for reuse and recycling. A traditional objective
function (Ztrad) and a bioinspired objective function (Zbio) was
then calculated and compared for each variant of the design
vector. The bioinspired objective function (Zbio) used a set of
structural and flow based ecological metrics to organize the
network, with the optimization criterion defined as reaching
median values of these metrics displayed in food webs. The
traditional objective function minimized the network’s total
financial cost and emissions. The total network cost was
calculated from the sum of material, labor, and energy costs.
Total network cost includes the cost of new PVC and nylon-
6,6; the cost of natural gas, diesel, and electricity; landfill costs;
and the cost of labor at all stages. Twelve emissions are
modeled: carbon dioxide, methane, nitrous oxide, sulfur
dioxide, nitrogen oxides, lead, carbon monoxide, volatiles
organic carbons, mercury, hydro-carbons, particulate matter,
and lead (CO2, CH4, N2O, SO2, NOx, Pb, CO, VOCs, Hg, HC,
PM, and SOx). These emissions originate from the manufacture
of virgin PVC, nylon-6,6, and a deep cleaning solution, the
generation of electricity specific to Georgia (where the
manufacture and recycling occurs), natural gas combustion,
and from transport by trucks based on their speed, load
capacity and fuel efficiency. This required the calculation of
distances traveled between actors, knowledge of the types of
vehicles used and their emissions based on load weight, and

detailed information about manufacturing and demanufacturing
processes. Detailed information for this process can be found in
the original analysis25 as well as in the Supporting Information.

Ecological Food Web Metrics and Objective Func-
tions. A selection of 50 food webs from those outlined in32,33

are used to update the median food web values used as
biological benchmarks (Table 1). These updated values

correspond to a self-imposed restriction to use only those
food web studies conducted using improved ecosystem data
collection techniques,34,35 begun primarily after 1993. This data
set including the specific values for each foodweb metric can be
found in the online Supporting Information of a prior
publication.7 The foodwebs analyzed by ENA have from 1 to
6 primary producers (i.e., organisms such as plants that bring
external energy into the system), and a number of consumers
and detrital or decomposer (recycler) components that
together make up the majority of the component species32,33,36

and so are structurally not dissimilar to the carpet recycling
network.
The food web metrics listed in Table 1 are calculated

following the formulas outlined in Layton et al.,7 eqs 1−16. The
food web metrics used in this paper can be classified in two
groups: six structural (LD, PR, PS, G, V, and λmax) and two flow
metrics (FCI and MPL). For all metrics, N is the number of
actors in the systems (analogous to species in a food web), and
L is the number of linkages (or directed vectors) between the
actors in the network. The structural metrics are all normalized
measures that specify the degree to which system components
are linked and the pattern of those linkages. Connectance is the
only metric missing here that was used in the original model
study, and is excluded here because of its strong dependence on
system size, as demonstrated in previous work.8

It would be desirable from both a design and analysis
perspective to only use structural food web metrics, as these
metrics may be calculated using only very basic information
about the system. Only the presence and direction of an
interaction between two actors is needed (see below), which is
easily obtainable information compared to information on flow
magnitude. Flow based information in industry is often
proprietary, making it much more difficult to obtain and
present results especially from a large number of industrial
sources.
Unfortunately, optimization done solely using structural

metrics will give a near infinite number of solutions for a given
network structure since the flow of material across every link is
arbitrary, and this may not allow for accurate simulations of
network performance. Thus, it is potentially possible that
optimization may require some flow based models. The two

Table 1. Median Target Food Web Values Taken from the
Post 1993 Food Web Dataset

food web metrics
median goal target values for fws collected

1993+

link density (LD) 5.04
prey to predator ratio (PR) 1.09
specialized predator fraction
(PS)

0.10

generalization (G) 6.18
vulnerability (V) 5.34
cyclicity (λmax) 4.24
Finn cycling index (FCI) 0.295
mean path length (MPL) 5.7
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flow based metrics used here (FCI and MPL) were selected
based on their ability to measure different aspects of the cycling
in the system. The Finn cycling index (FCI) is the most
common parameter used to evaluate cycling in other ecological
and human network studies.21,36−40 FCI represents the amount
of energy that is cycled through the system normalized to the
total system flux.41 Mean path length (MPL) represents the
number of transactions a given unit of material or energy
participates in before it leaves the system boundaries. Other
flow based metrics exist and may be useful in future analysis to
study other aspects of human network structure, for example,
refs 6, 11, 20−22, and 28.
The six structural metrics are calculated using an N × N

structural “food web” matrix of links between carpet network
components. That is, all calculations per eqs 1−12 are based on
a simple binary representation of whether a link exists between
two components (actors) in the matrix. A link refers to an
interaction, defined generally as a transfer of energy or material
between the two components. Thus, f ij represents the
directional interaction from actor i to actor j, and is
documented as a one in the ith row and jth column entry in
the matrix. A value of zero in this entry represents no
interaction from i to j (no link). Flow is columns (predators,
consumers) to rows (prey, producers). The square matrix
allows for the possibility of each actor simultaneously being
both consumer (predator) and producer (prey).
Linkage density (LD) is the number of links in the system

normalized by the number of actors in the system.42 The
number of prey and predators (nprey and npredator) are the
number of actors that provide and consume a resource,
respectively.43 The ratio of these two is the prey to predator
ratio (PR), which represents the balance of consumers to
producers in the system. A very low PR translates to a system
that is highly dependent on only a few producers; consumers
may have trouble finding alternate sources within the system
boundaries were a producer to fail. A subset of this is the
number of specialized predators (nS‑predator), which counts those
consumers that interact with only one actor, and when
normalized to npredator yields the specialized predator ratio
(PS); the fraction of all consumers that consume only one
producer. Extreme values of PS (i.e., close to one), may be
warning signs for an “at risk” system: if a system is primarily
composed of specialized interactions flexibility in the face of
disturbance is limited. Generalization and vulnerability (G and
V) are subsets of L and represent,respectively, the mean
number of producers consumed by each actor and the mean
number of consumers for which a producer may provide.43,44

Together, these terms indicate the average number of
producer−consumer interactions with whom a given producer
or consumer engages. From an economic perspective these
metrics may be useful for a company or industry looking to join
a particular network, giving insight into the relative number of
existing consumers and producers currently in a network. For
example a network with a very high V (a large number of
consumers on average) may be more desirable for an incoming
producer than one with a very low V. Cyclicity (λmax) is the
maximum real eigenvalue of the inverse of the food web
structural matrix. Cyclicity represents the rate at which the
number of cyclic pathways grow as the number of steps in the
cycle converges to infinity, and is taken to indicate the presence
and complexity of internal cycling in the system:24,33,45,46 The
value of cyclicity may be zero (no cycling), one (a single cycle),
or any value greater than one (strong cycling). Cyclicity is also

of interest because cycling produces indirect effects between
components that are connected via intermediaries− a property
of food webs that is of increasing interest to those who wish to
design human systems.5,7,24,33,45 A previous application of
cyclicity applied to thermodynamic power cycle networks
shows that increases in the metric correspond to decreases in
waste output and increases in the efficient usage of existing
resources.24 More detailed descriptions of these metrics may be
found in previous works.7,8,45,47
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The two flow based metrics, Finn cycling index and mean
path length (FCI and MPL), are calculated using eqs 13−16.
These calculations require knowledge of both structural
information and flow magnitude information, that is, how
much material or energy is moving across linkages as well as
across system boundaries. In contrast to the calculations of the
6 structural metrics, the FCI and MPL calculations use a N+3 ×
N+3 food web flow matrix that includes inputs from outside the
system (row zero), exports to outside the system (column N
+1), and losses from the system (column N+2). A flow from
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actor i to actor j is represented as a real value by tij, which is the
ith row and jth column entry in this matrix. A value of zero for
tij means no material or energy flow occurs from actor i to j and,
thus, no link exists. The total system throughput (TSTp) is the
total amount of material or energy that moves through the
system deals, both internally and that which passes in and out
of the system from outside the system boundaries.29,30 TSTp
can be thought of as a measure of size or level of activity similar
to gross national product GNP, which estimates the overall
economic activity of a nation.9,19 Total cycled system
throughflow (TSTC) is the total amount of flow that moves
through cycles in the system. The Finn cycling index (FCI) is
the fraction of the total flow in the system that participates in
cycles.19,38,41 An FCI of zero represents a total dependence on
external resources. For example a water network with an FCI of
zero would have no water recycling in the system−all actors
would only make use of fresh water. Mean path length (MPL),
represents the average number of actors “visited” by a material
or energy flow before exiting the system.41,48 Flows that remain
longer within the system boundaries (a larger MPL) visit more
actors and thus contribute more to maintaining the functioning
of the actors within the systems. A large MPL is strongly related
to higher cyclicity values, since a more complex cycle will
generally have a longer path. Ecosystems tend to have very
complex cycling (high cyclicity values) and longer path lengths
since the majority of energy in an ecosystem flows through the
recyclers and back into the system.49
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The traditional objective function value (Ztrad) is calculated
by summing equally weighted deviations between the calculated
emissions and cost and a set goal target value for each. Target
values for total cost and for each of the 12 emissions are taken
from the best possible scenario for the model and can be found
in Reap.25 The bioinspired objective function value (Zbio) is
calculated by summing equally weighted deviations between the
calculated metric and a median value of each food web metric
derived directly from ecological network data.7 Deviations from
either the ecological or traditional objective target values are
calculated using either eq 17 or 18, depending on whether
metric values are larger or smaller than the target, respectively.
Both models result in a nonlinear, mixed integer solution space
that is very difficult to solve using traditional optimization
algorithms. A stochastic search is used instead, based on
examining the results of 100 000 random design vectors for
each model.

= −d 1
metric value

metric goal target valuemin
(17)

= −d 1
metric goal target value

metric valuemax (18)

Correlation between Ecological and Traditional
Optimization. The initial analysis done by Reap25 used one
combination of nine equally weighted food web metrics in the
calculation of the bioinspired objective function. As a result, the
degree to which each individual metric affects the resultant
correlation was unknown. The influence of each individual
metric on the correlation is found here by calculating Zbio from
each food web metric individually, as well as from all possible
combinations of all the metrics weighted equally. Important
individual and metric groupings are signified by a strong
positive correlation between the minimization of both Ztrad and
Zbio, as calculated by the R2 value for linear trend lines.
The structural food web metrics alone cannot completely

identify the final network design because they have no influence
on flow magnitudes. For the investigation of the structural
metrics the flows moving across all used linkages were set at the
same constant value. The constant value chosen for this is the
smallest value among the maximum flow constraints, 8268 kg
year−1 of carpet. Each flow in the design vector has a maximum
and minimum allowable magnitude of carpet flow to ensure
that the model represents real conditions. Maximum
constraints, for example, could be the maximum amount of
carpet that a recycling center can process per year. Minimum
constraints are often simpler in that flows are not allowed to be
negative values, or a county must replace an X amount of
kilograms of carpet per year, requiring the inflow of carpet
whether it is new carpet or from recycled sourcesto at least
be X amount of kilograms per year. Selecting a constant value
of carpet flow from the model’s set of maximum constraints,
which are all larger than the minimum constrains, and then
choosing the smallest of these maximum constraints, assures
that all constraints on the system will be satisfied regardless of
the design structure chosen. Equalizing the flow values assures
that the relative impact of changes in the magnitude of
recycling and reuse (which are components of the design
vector) does not overshadow changes in the structure (i.e., a
link being turned “on” or “off”a one and zero multiplier
respectively), and facilitates consistent comparisons with the
ecological structural parameters (LD, PR, PS, G, V, and λmax).
The subsequent analysis relaxes the constant flow condition
and examines the correlation between traditional and
bioinspired objective functions when both network structure
and flow were allowed to vary.
Different network designs were generated by randomly

varying the network structure. The correlations between the
traditional and bioinspired objective functions are derived from
on 100 000 of these network designs. For constant-flow
conditions, each of the structural food web metrics in Table
1 was used as optimization criteria both individually and in all
possible combinations. For consistency, the values for FCI and
MPL in these scenarios were also calculated in the constant
flow scenarios. The constant flow scenarios suggest that certain
structural parameters are more useful predictors of traditional
cost-emissions minimization, and that the food web metrics
perform more poorly individually than when grouped. There-
fore, when flows are allowed to vary, the analysis only examines
groupings of the structural parameters, both with and without
the flow-based parameters, and combinations of flow-based
parameters alone. These two scenarios, with and without
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constant flow magnitude values, are presented separately in the
results section below.

■ RESULTS

Constant Flow Correlations. Individual Food Web
Metrics. The original correlation between Ztrad and Zbio
revealed that organizing industrial networks using ecological
parameters strongly and positively affected costs and
emission.25 Optimization using each individual food web metric
correlates with the emissions and cost performance that results
from a traditional optimization (Figure 2) although consid-
erable variance exists between the metrics; R2 values range from
0.960 (FCI) to 0.316 (V). Figure 2 shows the results for each
food web metric used individually alongside all 8 metrics
grouped and only the six structural metrics grouped. The R2

values for the individual metrics are listed in Table 2, and from
best to worst are FCI > MPL > G > LD > PR > λmax > PS, > V.
The R2 value for all six structural metrics combined is 0.876 -

higher than any of the structural metrics used individually. This
suggests that the structural metrics may work optimally in

groups; extreme effects of individual metrics may be
ameliorated by the effects of others when metrics are used in
combination.

Food Web Metric Groupings. Figure 3 shows different
groupings of the six structural metrics plotted against the
traditional objective function, and shows the specific combina-
tions strongly affects the resulting correlation. The best
combination is generalization, prey to predator ratio, specialized
predator fraction, and cyclicity (G, PR, PS, and λmax). When used
together, these four metrics produce an R2 value of 0.872,
which is hardly different from the R2 value of 0.876 for all six
structural metrics. That this combination has a correlation so
close to that of all six structural metrics is unexpected given the
testing of single metrics, especially PS and λmax performed
poorly alone (Table 2). These results reinforce the hypothesis
that individual metrics are less useful than groups; no individual
parameter in Figure 2 stands out as strongly influencing the
magnitude of the correlation.

Variable Flow Correlations. The preceding section
assumed a constant flow because the structural food web
metrics are not able to capture differences in flow magnitudes.
In this analysis, different network designs were generated by
randomly varying the network structure as well as the flow
amounts between the links in the network. The results for four
different Zbio objective functions (FCI, MPL, FCI and MPL;
only the six structural metrics; all eight metrics) based on
100 000 random network designs incorporating different flow
magnitudes, are plotted in Figure 4, with corresponding
correlations between Zbio and the traditional objective function,
Ztrad shown in Table 3.
Mean path length (MPL) is the food web metric that is most

strongly correlates with the minimization of the traditional
measures total cost and emissions, with an R2 value of 0.9916. A
close third is the flow metric Finn cycling index (FCI), with the
correlation of the two grouped (MPL and FCI) to traditional
optimization criteria falling between the correlations displayed

Figure 2. Relationship between the traditional and bioinspired objective function values for 100 000 random network designs when carpet flows
were held constant at 8268 kg/year.

Table 2. R2 Values Organized from Best to Worst for the
Linear Relationships between Zbio and Ztrad of Figure 2

Zbio = f() R2 for Zbio vs Ztrad

FCI 0.960
MPL 0.908
all eight metrics 0.886
six structural metrics 0.876
G 0.834
LD 0.833
PR 0.733
λmax 0.581
PS 0.477
V 0.316
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by each individual metric. However, the large correlations
displayed by both MPL and FCI along with the relatively small
difference between them do not argue strongly for one being
superior to the other. The two flow based metrics MPL and
FCI clearly control the positive correlation between ecological
and traditional optimization approaches when they are used in
conjunction with other metrics: the R2 value with both
structural and flow metrics is 0.7947 and is only 0.2108 when
flow based metrics are excluded.

■ DISCUSSION

The founding hypothesis of eco-industrial parks (EIPs) is that a
network structured like a natural ecosystem will inherit its other
beneficial properties, including desirable network characteristics
such as system robustness and sustainability. The analysis
presented here validates this idea. Using specific ENA metrics
to structure how individual components interact organizes the
material and energy flows into that also satisfies the traditional
economic goal of cost savings and the traditional environmental
goal of emissions reduction. That is, the cycling within an
industrial system is increased by adjustments to the system that
decrease the number of specialized consumers, and increase the
number of consumers receiving flows from a given producer or
the number of producers contributing to material or energy to a
particular consumer. Increasing the pathway proliferation rate
and minimum path lengths also are beneficial. Thus, a given
industrial network can be improved by determining how to
configure specific consumer-producer links so as to make these

Figure 3. Relationship between the traditional and bioinspired objective function values for 100 000 random network designs for combinations of
structural food web metrics when carpet flows were held constant at 8268 kg/year.

Figure 4. Relationship between the traditional and bioinspired objective function values when both structure and flows are allowed to vary.

Table 3. R2 Values for Linear Relationships Between Zbio and
Ztrad

Zbio = f() R2 for Zbio vs Ztrad

MPL 0.9916
FCI and MPL 0.9914
FCI 0.9904
all eight metrics 0.7947
six structural metrics 0.2108
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network properties more convergent to median values in real
ecosystems. Intuitively, this makes sense because natural
ecosystems efficiently (re)cycle materials (biomass), which
reduces both draws upon external energy (e.g., production of
plant biomass via solar energy conversion) and waste (biomass
that is exported outside the system). Industrial systems with
low costs and emissions arguably also are more efficient
because they use and waste fewer resources than systems with
higher costs and emissions. Although robustness is not
explicitly addressed in this work, the ability of ecologically
inspired network designs to increase network cycling and waste
reduction suggests a similar approach also could be used to
examine this property in human systems.28

The analysis presented here indicates that the flow-based
food web metrics FCI and MPL and a subset of food web
structural metrics can be used to improve the performance of
cyclic industrial networks where minimizing costs and
emissions are important criteria. Four structural food web
metrics in particular (λmax, PS, PR, and G) account for nearly all
of the correlation between biological and traditional objective
function minimizations of the carpet network. A limited set of
food web structural features results in a well-designed network
structure under of constant and uniform flow conditions. Using
the flow based metrics FCI and MPL both flow magnitudes and
the network structure can be determined. The strongest
correlation with the minimization of cost and emissions was
found using mean path length (MPL), which resulted in a
nearly perfect correlation with a R2 of 0.9916, although both
Finn cycling index (FCI) and the combination of FCI and MPL
produced similarly high R2.
The four structural metrics (Generalizability, Prey to

Predator Ratio, Specialized Predator Fraction, and Cyclicity)
that accounted for most of the correlation between the
biological structure and traditional objective function opti-
mization reveal potential design rules for EIPs. The target
values for the first three of these metrics produce a system
where each consumer interacts with a variety of producers; the
number of producers and consumers is roughly equal, and only
a small proportion of all consumers interact with only one
producer. Industrial networks that converge on cyclicity values
typical of ecological systems are strongly interconnected rather
than having actors which, while connected, do not participate in
loops. The importance of the parameter cyclicity in producing
large correlations further emphasizes that cost and emission
reductions occur when there is an opportunity for flows to pass
through multiple and long paths within the system rather than
the direct input-exit chain found in traditional industrial
systems. Material cycling in natural systems is very strongly
influenced by the presence of detritivores/decomposers; over
half of all the material in a food web can transit through
decomposer-type species such as fungi, which recycles unused
material or dead matter (detritus) and returns this material and
energy back to the system when it is consumed. Decomposers
ensure the presence of food web pathways that include all other
species in the system because the connections due to this
consumption pattern contribute to many other existing cycles.
Even limited connections to an actor that functions similarly in
an industrial network would dramatically increase connectivity,
and thereby efficiency. In an industrial context, a detritus-type
actor is an actor that functions in waste treatment (i.e.,
composting), recovery, and recycling (i.e., repair, remanufac-
ture, reuse, resale), or agriculture (i.e., farm, zoo, landscaping,
green house, golf course). Additionally, to qualify as a detritus-

type actor there must be at least one link entering and leaving
said actor. This last criterion is based on the fundamental
functional description of a detritus/decomposer in a food web
and ensures that the detritus-type actor is an active participant
of the network. Although it is not clear why the metric
vulnerability (V) is less important in relation to cost and
emission minimization, the lack of a strong effects of linkage
density (LD) again reinforces that the basic producer-consumer
links, per se, are less important than links that allow a consumer
or producer to interact indirectly (i.e., through intermediaries,
known as indirect effects) with other actors,20,21,33,50−52

particularly since this will allow increase input into the
decomposer compartment.
The inclusion of flow based parameters allow for the

possibility of better correlations with Ztrad because the flow
magnitudes can be optimized in addition to the network
structure. These metrics can route flows preferentially through
strongly connected components, rather than regulating links in
only a binary (on−off) manner. It is not surprising that network
performance is proportional to MPL since a larger MPL means
more actors participate in exchanges, keeping material flowing
within the system for longer, reducing the amount of discarded
usefulness of a material or energy flow. One industry design
suggestion that emerges from understanding the positive role of
MPL is to focus on the addition of industries and actors that
can interact with existing material flows, increasing the average
length of the route a material or energy flow will take through
the network. Building a network based on existing material
flows also adds some security for invitees into an EIP as the
ability to meet their needs is already well established, a noted
concern of industries when asked to participate in newly
designed eco-industrial parks.53,54

The structural food web metrics are less indicative of
desirable network performance than the flow based metrics. No
set of structural metrics were as highly correlated with Ztrad as
flow based metrics were, and adding the flow metrics to the
structural metrics also improved their performance in the
constant-flow scenarios. This indicates structural metrics must
be combined with another method that can select flow
magnitudes in order to find a complete solution for the
network. However, these structural metrics still may be useful
to network designers. First, there may be situations where flows
cannot be altered; meaning that optimizing around structure is
the only option. Second, a two-step process where optimization
based on structure is followed by flow-based optimization
appears to be the most effective method for producing the most
cyclic EIP designs (Layton, Weissburg and Bras, unpub). Third,
although flow based-metrics allow for more precise network
representations, the trade-off is the effort associated with
collecting this quantitative flow information. The cost of
information is far less with structural metrics, which only
require knowing a link exists between two actors. Based on
what is seen here and the longstanding belief that form and
function are inseparable, design criteria based on structure
alone is certainly not without its own value. As was seen in
Figure 2, even a structure only optimization correlates well with
emissions and costs reductions (λmax, PS, PR, and G−R2 with an
0.876).
Despite long-standing interest in creating more cyclic

production systems, there is still a shortage of design rules to
guide the assembly of collections of interacting industries such
as those found in an EIP. The design methods presented here
result in industrial system structures and cycling that are closer
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to their natural analogs, and which exceed the values displayed
by most industrial symbioses analyzed by Layton et al.7 All food
web metrics investigated in this paper except Vulnerability (V)
show improvements from the worst to best designs (Tables 2
and 3), with associated benefits in system performance from a
traditional standpoint.
That application of structural and flow metrics together seem

to provide design guidance for networks that are both
economically and biologically sustainable, through network
cost and emissions reductions respectively, is a source of
optimizm given the inevitable growth industrialization around
the world. Using ecological network analysis as part of the
design of industrial networks yields a set of quantitatively
verifiable practices that can enable more sustainable production
at a variety of scales. Water systems, industrial symbioses, and
city scale economies all have been analyzed with these
techniques developed for food webs, showing there are strong
parallels between these human and biological systems.6,7,9,28

Further, using design rules based on ecological networks also
may result in industrial networks that embody other desirable
food web features: ecological network analysis can be used to
examine trade-offs between cycling efficiency7,24 and resil-
ience.6,55 The methods described here would be amenable to
these systems and other collections of colocated actors that
exchange material and/or energy.
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